
Lab 2 Assignment 1

Lab 2 Introduction
Operating Systems, EDA093 - DIT400

Lab 2 Assignment 2

Pintos

• Time to explore an operating system!
• Pintos already implements a simple threading

system
– Thread creation and termination
– Synchronization primitives (semaphores, locks,

condition variables)

• But this system has problems:
– Wait is based on a spinlock (i.e. it just wastes CPU)

Lab 2 Assignment 3

Pintos Threading System
struct thread

{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes).
*/
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for
all-threads list.*/
/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

You add more fields here as you need them.

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

~/pintos/src/threads/threads.h

Lab 2 Assignment 4

Pintos Threading System
struct thread

{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes).
*/
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for
all-threads list.*/
/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

You add more fields here as you need them.

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

~/pintos/src/threads/threads.h

Lab 2 Assignment 5

Threads continued….

• Look at:
– threads/thread.h
– threads/thread.c
– threads/synch.h
– threads/synch.c

to understand
– How threads are created and executed
– How the provided scheduler works
– How the various synchronizations primitives (locks,

semaphores, condition variables) are implemented

Lab 2 Assignment 6

• You may modify functions or add your own
code in
– threads.h
– timer.h
– timer.c

• There are several tests which test the sleep
function in different ways.

• Run make check from the ~/pintos/src/threads
directory

Implementation Suggestions

Lab 2 Assignment 7

• The tests alarm-* are for lab2
• Ignore the test result of “batch-scheduler”

for now. That is for Lab3!
• A correct solution should “pass” all these

tests.

Implementation Suggestions

Lab 2 Assignment 8

Submission

• Test the code
• Write the report
• Prepare the archive

