L.ab 3 Introduction

Operating Systems, EDA093 - DIT400

[.ab Overview

 Pintos

 Main challenge: Synchronize access to a
shared resource.

— Schedule jobs for an external hardware accelerator (e.g.
GPU, co-processor) that send and receive data through a
common bus.

Bridge Problem

A two way east-west road contains a narrow bridge with only one lane. An
eastbound (or westbound) car can pass over the bridge only if there is no
oncoming car on the bridge. Traffic may only cross the bridge in one direction at a
time, and if there are ever more than 3 vehicles on the bridge at one time, it will
collapse under their weight. In this system, each car is represented by one
thread, which executes the procedure OneVehicle when it arrives at the bridge.

OneVehicle(Direction direc) {

ArriveBridge(direc); ¥% direc gives the direction in which
CrossBridge(direc); the vehicle will cross the bridge

ExitBridge(direc); }

Bridge Problem - Solution

a) Correctness Constraints
. At most 3 cars are on the bridge at a time
Il. All cars on the bridge go in the same direction

lll. Whenever the bridge is empty and a car is waiting, that car should get on the
bridge

IV. Whenever the bridge is not full and a car is waiting to go the same direction as
the cars on the bridge, that car should get on the bridge

b) Cars will be waiting to get on the bridge, but in two directions. Use an array of
two condition variables, waitingToGo[2].

c) It will be necessary to know the number of cars on the bridge (cars, initialized
to 0), and the direction of these cars if there are any (call it current-direction).
It will also be useful to know the number of cars waiting to go in each
direction; use an array waiters[2].

Bridge Problem - Solution

ArriveBridge(int direction) {
lock.acquire();

// while can't get on the bridge, wait

while ((cars == 3) | | (cars > 0 && currentdirection != direction)) {
waiters[direction]++;
waitingToGol[direction].wait();
waiters[direction]--;

}

// get on the bridge

cars++;

currentdirection = direction;
lock.release();

Bridge Problem - Solution

ExitBridge() {
lock.acquire();
cars--;

// if anybody wants to go the same direction, wake them
if (waiters[currentdirection] > 0)
waitingToGo[currentdirection].signal();

// else if empty, try to wake somebody going the other way

else if (cars == 0)
waitingToGo[1-currentdirection].broadcast();

lock.release();

[Lab Task

e (Classical IPC Problem

 Implement a Shared bus system

— Up to 3 threads of the same direction can use bus
concurrently

— High priority threads ahead of low priority
— No need to consider fairness!

— Prototype functions already implemented in:

e src/devices/batch-scheduler.c

[Lab Task

truct {

int direction;

int priority;
} task_t;

{SENDER, RECEIVER}

{NORMAL, HIGH}

[Lab Task

void batchScheduler(unsigned int num_tasks_send, unsigned int num_task_receive,
unsigned int num_priority_send, unsigned int num_priority_receive)

unsigned int i;
for(i = @; i < num_tasks_send; i++)

thread_create("sender_task", 1, senderTask, NULL);

for(i = @; i < num_task_receive; i++)
thread_create("receiver_task", 1, receiverTask, NULL);

for(i = 0; i < num_priority_send; i++)
thread_create("prio_sender_task", 1, senderPriorityTask, NULL);

for(i = @; i < num_priority_receive; i++)
thread_create("prio_receiver_task", 1, receiverPriorityTask, NULL);

[Lab Task

')

void batchScheduler(unsigned int ()jh ~ unsigned int num_task_receive,
unsigned int num_priority_sen.. ~int num_priority_receive)

N '~ i;

for(i = @; i < num_tasks_send; i++)

for(i = 0; i < num_task_receive; i++)
thread_create("receiver_task", 1, receiverTask, NULL);

for(i = 0; i < num_priority_send; i++)
thread_create("prio_sender_task", 1, senderPriorityTask, NULL);

for(i = @; i < num_priority_receive; i++)
thread_create("prio_receiver_task", 1, receiverPriorityTask, NULL);

10

[Lab Task

You need to implement the following three functions:

void oneTask(task_t task) {
getSlot(task);

transferData(task):
leaveSlot(task);

}

If you print in any of these functions, you might get a timeout and
fail the test.

Assignment Overview

* The lab assignment will involve 2 objectives:
1. Moditying the Pintos code
2. Writing a report that explains your solution

e Execute command “make check” in the
~/pintos/src/threads directory to run the test.

pass tests/threads/alarm-single
pass tests/threads/alarm-multiple
pass tests/threads/alarm-simultaneous

pass tests/threads/alarm-zero

pass tests/threads/alarm—-negative
pass tests/threads/batch-scheduler
All 6 tests passed.

| The automated test only determines that the execution terminates

Submission

e Test the code
e Write the report

e Prepare the archive

