Lab 2: Alarm Clock in Pintos

Operating Systems Course
Chalmers and Gothenburg University

September 23, 2021

1 Introduction to Pintos

In this lab (as well as 1lab3), your job is to extend the functionality of Pintos. Pintos is a simple operating
system for the 80 x 86 architecture, built for educational purposes. It supports kernel threads, loading
and running user programs, and a file system, but it implements all of these in a very simple way. In the
Pintos projects, you will strengthen the support of Pintos in some of these areas. For practical reasons,
we will run Pintos projects in the Bochs system simulator, that is, a program that simulates an 80 x 86
CPU and its peripheral devices accurately enough that unmodified operating systems and software can
run under it.

This chapter explains how to get started working with Pintos, instructions for working in Chalmers
STUDAT machines, the source code structure, building, debugging, submission information, and lab2
description. You should read the entire chapter before you start work on the assignment.

1.1 Getting Started

To get started, youll have to log into a machine that Pintos can be built on. The EDA093/DIT401
"officially supported" Pintos development machines are the StuDAT Linux machines. We will test your
code on these machines, and the instructions given here assume this environment. We cannot provide
support for installing and working on Pintos on your own machine.

Once you’ve logged into one of these machines, either locally or remotely, fetch the source for Pintos from
the Canvas page of the course and extract it into your home directory. Then, follow the instructions on
how to add the binaries directory to your PATH environment. Under bash, the standard login shell, you
can add the following line into your $HOME/ .bashrc (or create it if it doesn’t exist):

export PATH=/chalmers/sw/unsup64/phc/b/pkg/bochs-2.6.6/bin: $HOME/pintos/src/utils:$PATH

Remember that files starting with a dot are hidden and may not show up in file managers. Do not forget
to reload the configuration using;:
source $HOME/.bashrc

or restart the terminal afterwards to apply the changes.

Moreover, make sure the binaries in pintos/src/utils/ are executable:
chmod +x pintos/src/utils/pintosx*

chmod +x pintos/src/utils/backtrace

1.2 Source Tree Overview
Let’s take a look at what’s inside Pintos. Here’s the directory structure that you should see in pintos/src:

threads/
Source code for the base kernel, which you will modify in this lab.

userprog/
Source code for the user program loader, which you will not need to modify.

vm/
An almost empty directory, which you will not need to modify.

filesys/
Source code for a basic file system, which you will not need to modify.

devices/

Source code for I/O device interfacing: keyboard, timer, disk, batch-scheduler etc. You will
make modifications in this directory for this lab and also lab3. File timer.c for the lab2 and
batch-scheduler.c for lab3.

lib/
An implementation of a subset of the standard C library. The code in this directory is compiled
into both the Pintos kernel and user programs that run under it. In both kernel code and user

programs, headers in this directory can be included using the #include <...> notation. You
should have no need to modify this code.

lib/kernel/

Parts of the C library that are included only in the Pintos kernel. This also includes implemen-
tations of some data types that you are free to use in your kernel code: bitmaps, doubly linked
lists, and hash tables. In the kernel, headers in this directory can be included using the #include
<...> notation.

lib/user/
Parts of the C library that are included only in Pintos user programs. In user programs, headers
in this directory can be included using the #include <...> notation.

tests/
Tests for each project. You can modify this code if it helps you test your submission, but we will
replace it with the originals before we run the tests.

examples/
Example user programs for general purpose use. You should not need to use this in this assignment.

misc/, utils/
These files may come in handy if you decide to try working with Pintos on your own machine.
Otherwise, you can ignore them.

1.3 Building Pintos

As the next step, build the source code. First, cd into the threads directory. Then, issue the make
command. This will create a build directory under threads, populate it with a Makefile and a few
subdirectories, and then build the kernel inside. The entire build should take less than 30 seconds.

Following the build, the following are the interesting files in the build directory:

Makefile
A copy of pintos/src/Makefile.build. It describes how to build the kernel.

kernel.o

Object file for the entire kernel. This is the result of linking object files compiled from each
individual kernel source file into a single object file. It contains debug information, so you can run
GDB or backtrace on it.

kernel.bin

Memory image of the kernel, that is, the exact bytes loaded into memory to run the Pintos kernel.
This is just kernel.o with debug information stripped out, which saves a lot of space, which in
turn keeps the kernel from bumping up against a 512kB size limit imposed by the kernel loader’s
design.

loader.bin

Memory image for the kernel loader, a small chunk of code written in assembly language that reads
the kernel from disk into memory and starts it up. It is exactly 512 bytes long, a size fixed by the
PC BIOS.

Subdirectories of build contain object files (.0) and dependency files (.d), both produced by the com-
piler. The dependency files tell make which source files need to be recompiled when other source or
header files are changed.

1.4 Running Pintos

We’ve supplied a program for conveniently running Pintos in a simulator, called pintos. In the simplest
case, you can invoke pintos as pintos argument..., where each argument is passed to the Pintos kernel
for it to act on.

Try it out. First cd into the newly created build directory. Then issue the command pintos run
alarm-multiple, which passes the arguments run alarm-multiple to the Pintos kernel. In these ar-
guments, run instructs the kernel to run a test and alarm-multiple is the test to run.

Pintos boots and runs the alarm-multiple test program, which outputs a few screenfuls of text. When
it’s done, you can close Bochs by clicking on the “Power” button in the window’s top right corner, or
rerun the whole process by clicking on the “Reset” button just to its left. The other buttons are not very
useful for our purposes. (If no window appeared at all, then you’re probably logged in remotely and X
forwarding is not set up correctly. In this case, you can fix your X setup, or you can use the ‘-v’ option
to disable X output: pintos -v —— run alarm-multiple.)

The text printed by Pintos inside Bochs probably went by too quickly to read. However, you’ve probably
noticed by now that the same text was displayed in the terminal you used to run pintos. This is because
Pintos sends all output both to the VGA display and to the first serial port, and by default the serial
port is connected to Bochs’s stdin and stdout. You can log serial output to a file by redirecting at the
command line, e.g. pintos run alarm-multiple > logfile.

The pintos program offers several options for configuring the simulator or the virtual hardware. If you
specify any options, they must precede the commands passed to the Pintos kernel and be separated
from them by ——, so that the whole command looks like pintos option... — —argument.. .. Invoke
pintos without any arguments to see a list of available options.

The Pintos kernel has commands and options other than run. These are not very interesting for now,
but you can see a list of them using —h, e.g. pintos -h.

1.5 Debugging versus Testing

When you’re debugging the code, it’s useful to be able to run a program twice and have it do exactly
the same thing. On second and later runs, you can make new observations without having to discard or
verify your old observations. This property is called “reproducibility.” One of the simulators that Pintos
supports, Bochs, can be set up for reproducibility, and that’s the way that pintos invokes it by default.

Of course, a simulation can only be reproducible from one run to the next if its input is the same each
time. For simulating an entire computer, as we do, this means that every part of the computer must
be the same. For example, you must use the same command-line argument, the same disks, the same
version of Bochs, and you must not hit any keys on the keyboard (because you could not be sure to hit
them at exactly the same point each time) during the runs.

While reproducibility is useful for debugging, it is a problem for testing thread synchronization, an
important part of most of the projects. In particular, when Bochs is set up for reproducibility, timer
interrupts will come at perfectly reproducible points, and therefore so will thread switches. That means
that running the same test several times doesn’t give you any greater confidence in your code’s correctness
than does running it only once. No number of runs can guarantee that your synchronisation is perfect,
but the more you do, the more confident you can be that your code doesn’t have major flaws.

1.6 Legal and Ethical Issues

Pintos is distributed under a liberal license that allows free use, modification, and distribution. Students
and others who work on Pintos own the code that they write and may use it for any purpose. Pintos
comes with NO WARRANTY, not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

In the context of Chalmers EDA093/DIT401 course, please respect the spirit and the letter of the honor
code by refraining from reading any homework solutions available online or elsewhere. Reading the
source code for other operating system kernels, such as Linux or FreeBSD, is allowed, but do not copy
code from them literally. Please cite the code that inspired your own in your report.

1.7 Acknowledgements
The Pintos core and this documentation were originally written by Ben Pfaff bip@cs.stanford.edu.
Additional features were contributed by Anthony Romano chz@ut.edu.

The GDB macros supplied with Pintos were written by Godmar Back gback@cs.vt.edu, and their docu-
mentation is adapted from his work.

The original structure and form of Pintos was inspired by the Nachos instructional operating system
from the University of California, Berkeley [?].

The Pintos projects and documentation originated with those designed for Nachos by current and former
CS 140 teaching assistants at Stanford University, including at least Yu Ping, Greg Hutchins, Kelly
Shaw, Paul Twohey, Sameer Qureshi, and John Rector.

The current version has been edited and adapted to the requirements of the EDA093/DIT401 Operating
Systems course of Chalmers University of Technology by Hannaneh Najdataei and Dimitris Palyvos in
collaboration with Vincenzo Gulisano and Marina Papatriantafilou.

1.8 Trivia

Pintos originated as a replacement for Nachos with a similar design. Since then Pintos has greatly
diverged from the Nachos design. Pintos differs from Nachos in two important ways. First, Pintos runs
on real or simulated 80 x 86 hardware, but Nachos runs as a process on a host operating system. Second,
Pintos is written in C like most real-world operating systems, but Nachos is written in C++.

Why the name “Pintos”? First, like nachos, pinto beans are a common Mexican food. Second, Pintos
is small and a “pint” is a small amount. Third, like drivers of the eponymous car, students are likely to
have trouble with blow-ups.

2 Assignment Description

One of the classic synchronization methods is busy-waiting, i.e. spinning in an endless loop until some
information from another thread/process stops you. An obvious drawback, especially in uniprocessor
machines, is that CPU cycles are wasted without any useful work being done. In this lab, you will get
deeper in the synchronization implementation and try to provide an alternative implementation of a
sleep function.

Your assignment in this lab is to re-implement timer_sleep(), defined in ‘devices/timer.c’. Although
a working implementation is provided, it “busy waits”, that is, it spins in a loop checking the current
time and calling thread_yield() until enough time has gone by. Re-implement this function to avoid
busy waiting.

void timer_sleep (int64 t ticks) Suspends execution of the calling thread until time has ad-
vanced by at least x timer ticks. Unless the system is otherwise idle, the thread need not wake up
after exactly = ticks. Just put it on the ready queue after they have waited for the right amount of
time.

timer_sleep() is useful for threads that operate in real-time, e.g. for blinking the cursor once per
second.

The argument to timer_sleep() is expressed in timer ticks, not in milliseconds or any another unit.
There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is a macro defined in devices/timer.h.
The default value is 100. We don’t recommend changing this value, because any change is likely to cause
many of the tests to fail.

Separate functions timer_msleep(), timer_usleep(), and timer_nsleep() do exist for sleeping a spe-
cific number of milliseconds, microseconds, or nanoseconds, respectively, but these will call timer_sleep()
automatically when necessary. You do not need to modify them.

¢

If your delays seem too short or too long, reread the explanation of the ‘-r’ option to pintos (see

Section .

Hint For a thread not to 'busy wait’ after calling the timer_sleep() function, the thread has to block,
thus changing its state from running to blocked. Please be reminded that the processor does not store
any information about the state of each thread, the blocked thread itself should store the information
about how long it is blocked.

For each clock tick, a timer interrupt is triggered and timer_interrupt (), the interrupt handler, is
executed. We exploit this interrupt handler to activate sleeping threads and also update thread statistics.

The thread_foreach() function should be used to iterate over all blocked threads. Check if a blocked
thread is ready to wakeup and call thread_unblock() to activate the thread or update its sleep timer.

3 How to test - What to submit

We will grade your assignment based on both test results and design quality. The grade will be Pass or
Fail.

3.1 Testing

This lab has several tests, each of which has a name beginning with tests. To completely test your
submission, invoke make check from the project build directory. This will build and run each test and
print a “pass” or “fail” message for each one. When a test fails, make check also prints some details of
the reason for failure. After running all the tests, make check also prints a summary of the test results.

You can also run individual tests one at a time. A given test ¢ writes its output to ¢.output, then a
script scores the output as “pass” or “fail” and writes the verdict to ¢.result. To run and grade a single
test, make the .result file explicitly from the build directory, e.g.:

make tests/threads/alarm-multiple.result

If make says that the test result is up-to-date, but you want to re-run it anyway, either run make clean
or delete the .output file by hand.

By default, each test provides feedback only at completion, not during its run. If you prefer, you can
observe the progress of each test by specifying VERBOSE=1 on the make command line, as in

make check VERBOSE=1
You can also provide arbitrary options to the pintos run by the tests with PINTOSOPTS=’@dots’, e.g.:
make check PINTOSOPTS=’-j 1’

to select a jitter value of 1.

All of the tests and related files are in pintos/src/tests. Before we test your submission, we will
replace the contents of that directory by a pristine, unmodified copy, to ensure that the correct tests are
used. Thus, you can modify some of the tests if that helps in debugging, but we will run the originals.

All software has bugs, so some of our tests may be flawed. If you think a test failure is a bug in the test,
not a bug in your code, please point it out. We will look at it and fix it if necessary.

Please don’t try to take advantage of our generosity in giving out our test suite. Your code has to work
properly in the general case, not just for the test cases we supply. For example, it would be unacceptable
to explicitly base the kernel’s behavior on the name of the running test case. Such attempts to side-step
the test cases will receive no credit. If you think your solution may be in a gray area here, please ask us
about it.

3.2 Submission

We will judge your design based on the report and the source code that you submit. To pass the lab, you
need to implement all the requested specifications and verify your code with the self-test examples found
below. You also need to write a report where you describe the design and behavior of your solution.
Finally, you need to upload both the report and your code to Canvas. The following instructions describe
the submission process in detail:

1. Writing the report For your report, begin by describing the implementation of your solution.
More specifically, briefly analyze how you implemented each of the following:

e Data Structures Highlight for us the actual changes to data structures. Also add a very
brief description of the purpose of each new or changed data structure. The limit of 25 words
or less is a guideline intended to save your time and avoid duplication with later areas.

e Algorithms This is where you tell us how your code works. We might not be able to easily
figure it out from the code, because many creative solutions exist for most OS problems. Help
us out a little. Your report should be at a level below the high level description of requirements
given in the assignment. We have read the assignment too, so it is unnecessary to repeat or
rephrase what is stated there. On the other hand, your description should be at a level above
the low level of the code itself. Don’t give a line-by-line run-down of what your code does.
Instead, use your report to explain how your code works to implement the requirements.

e Synchronization An operating system kernel is a complex, multi-threaded program, in which
synchronizing multiple threads can be difficult. That is why we want you to explain explicitly
how you chose to synchronize this particular type of activity.

e Rationale Whereas the other sections primarily ask “what” and “how”, the rationale section
concentrates on “why”. This is where we would like you to justify some design decisions,
by explaining why the choices you made are better than alternatives. You may be able to
state these in terms of time and space complexity, which can be made as rough or informal
arguments (formal language or proofs are unnecessary).

2. Preparing the code Your design will also be judged by looking at your source code. We will
typically look at the differences between the original Pintos source tree and your submission, based
on the output of a command like diff -urpb pintos.orig pintos.submitted. We will try to
match up your description of the report with the code submitted. Important discrepancies between
the description and the actual code will be penalized, as will be any bugs we find by spot checks.

Pintos is written in a consistent style. Make your additions and modifications in existing Pintos
source files blend in, not stick out. In new source files, adopt the existing Pintos style by preference,
but make your code self-consistent at the very least. There should not be a patchwork of different
styles that makes it obvious that three different people wrote the code. Use horizontal and vertical
white space to make code readable. Add a brief comment on every structure, structure member,
global or static variable, typedef, enumeration, and function definition. Update existing comments
as you modify code. Don’t comment out or use the preprocessor to ignore blocks of code (instead,
remove it entirely). Use assertions to document key invariants. Decompose code into functions
for clarity. Code that is difficult to understand because it violates these or other “common sense”
software engineering practices will be penalized.

After you have verified that your code works correctly on the StuDAT machines, run the prepare-
submission script found in the lab folder. The script will check that your code compiles correctly
and it will create an archive with only the necessary files for grading.

3. Final submission For the final submission, prepare an archive containing the archive of your code
(prepared as per the instructions above) and the report file and upload it to canvas.

FAQ

e Do I need to account for timer values overflowing?

Don’t worry about the possibility of timer values overflowing. Timer values are expressed as signed
64-bit numbers, which at 100 ticks per second should be good for almost 2,924,712,087 years. By
then, we expect Pintos to have been phased out of the EDA093/DIT401 curriculum.

Bibliography

[1] W. A. Christopher, S. J. Procter, and T. E. Anderson. The nachos instructional operating sys-
tem. In Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993
Conference Proceedings, USENIX’93, page 4, USA, 1993. USENIX Association.

	Introduction to Pintos
	Getting Started
	Source Tree Overview
	Building Pintos
	Running Pintos
	Debugging versus Testing
	Legal and Ethical Issues
	Acknowledgements
	Trivia

	Assignment Description
	How to test - What to submit
	Testing
	Submission

	FAQ

