Programming Assignment 2 - Pintos

Operating Systems, EDA092 - DIT400

based on Pintos documentation by Ben Pfaff
adapted by Yiannis Nikolakopoulos, Ivan Walulya

‘Welcome!

During the course, we have discussed and also shared hands on experiences about the
different challenges that embrace the design and implementation of modern operating sys-
tems. This lab is intended for you to face a challenging dimension at the basis of real
operating systems: synchronization. The goal is to see its complexity first-hand and solve
synchronization and scheduling related problems that resemble the ones that could appear
in practice. In this lab we will use Pintos, an educational operating system supporting ker-
nel threads, loading and running of user programs and a file system. Pintos is among the
international well-established platforms for such assignments and is used at various schools,
such as Stanford, Virginia Tech and Max Planck Institute, for lab assignments.

This assignment is divided into 2 tasks:

1. The first task will focus on the enhancement of synchronization implementations. One
of the classic synchronization methods for a thread is busy-waiting, i.e. spinning in an
endless loop until some information from another thread/process stops it. An obvious
drawback, especially in uniprocessor machines, is that CPU cycles are wasted without
any useful work being done. In this task, you will get deeper in the synchronization
implementation and try to provide an alternative implementation of a sleep function.

2. In the second task, you will deal with the synchronization problems that occur when
scheduling jobs that send and receive data through a common bus for an external
hardware accelerator (e.g. GPU, co-processor).

Short Contents

1 Introduction. ..o e e e e e eeeeeeeeooooossssonees 2
2 Assignment Description o ¢ v v e v oo v e i ittt i e 8
3 How to test - What tosubmit...................... 18
A Reference Guide « o o v oo v it i e ittt i i e 21
B Debugging Tools e v oo v e e i i iiiiiiiieeeeeennn. 54
C Installing PIntos . o v oo o v v v i i it eeneennn 65
Bibliography o v o o o v v vttt e e i i e et e e 68

175 7 1= 70

Table of Contents

1 Introduction..................... 2
1.1 READ ME FIRST 2
1.2 Getting Started 2

1.2.1 Source Tree OVerview, 3
1.2.2 Building Pintos........ 4
1.2.3 Running Pintos........ 4
1.2.4 Debugging versus Testing................. 5
1.3 Legal and Ethical Issues 6
1.4 Acknowledgements i 6
1.5 Trivia . oo 6

2 Assignment Description.................... 8

2.1 Requirementsc.iiniin i 8
2.1.1 Alarm Clockooo i 8
2.1.2 Batch scheduling.......... 9
2.1.3 Design Document 10

2.2 Background......... .. 10
2.2.1 Understanding Threads 10
222 Source Files....... ... 11

2.22.1 ‘devices’code............iiiiiii 12
2.2.2.2 CLibfiles. .. 13
2.2.3 Synchronization 15
2.2.4 Development Suggestions...................oiii.... 15

2.3 FAQ .o 16
2.3.1 Alarm Clock FAQ ... 17

3 How to test - What to submit............. 18
3.1 Testing . ..o 18
3.2 SUbImISSION ...\t 18

3.2.1 Design Document 18
3.2.2 Source Code.ooiiii 19

Appendix A Reference Guide............... 21

Al Loading...... ..o 21
A1l TheLoader.............iine e, 21
A.1.2 Low-Level Kernel Initialization......................... 22
A.1.3 High-Level Kernel Initialization 22
A.1.4 Physical Memory Map.............oiiiiiiiinein. .. 23

A2 Threads. ... 24
A21 structthread............. ... 24
A.2.2 Thread Functions, 26

A.2.3 Thread Switching 28

ii

A.3 Synchronization 29

A.3.1 Disabling Interrupts 29
A3.2 Semaphores......... ... 30
A3.3 LOCKS .o 31
A3.4 MOnItors . ..ot 32
A.3.4.1 Monitor Example 32

A.3.5 Optimization Barriers 33
A4 Interrupt Handling......... 35
A.4.1 Interrupt Infrastructure................................ 35
A.4.2 Internal Interrupt Handling 37
A.4.3 External Interrupt Handling 37
A5 Memory Allocation ... 38
A5.1 Page Allocator 38
A.5.2 Block Allocator ... 40
A6 Virtual Addresses. 41
A7 PageTable. ... 42
A.7.1 Creation, Destruction, and Activation................... 42
A.7.2 Inspection and Updates..................cooiiiiooo. .. 42
A.7.3 Accessed and Dirty Bits 43
A.7.4 Page Table Details i, 44
AT AT Structure 44
A.7.42 Page Table Entry Format 46
A.7.4.3 Page Directory Entry Format...................... 47

A8 Hash Table. 47
ABT1 Data Types. ... 48
A.82 Basic Functions................ .. 49
A.8.3 Search Functions........... 50
A.8.4 Tteration Functions.............. 51
A.8.5 Hash Table Example 52
A8.6 Auxiliary Data.......... ... 53
A.8.7 Synchronization........... 53
Appendix B Debugging Tools............... 54
Bl printf() ..o 54
B2 ASSERT . ..ttt 54
B.3 Function and Parameter Attributes 54
B4 Backtraces 55
B4l Example..... ... 55
B.5 GDB . 57
B.5.1 Using GDB ... 57
B.5.2 Example GDB Session.................. 60
B5.3 FAQ oo 62
B.6 Triple Faultso 63
B.7 Modifying Bochs........ 63
B8 TIPS ¢t 64
Appendix C Installing Pintos 65

C.1 Building Bochs for Pintos 66

Bibliography........... ... i, 68
Hardware References o i, 68
Software References 68
Operating System Design References 69

| (e =) 1 1< = I 70

iv

Chapter 1: Introduction 2

1 Introduction

Welcome to Pintos. Pintos is a simple operating system for the 80x86 architecture, built for
educational purposes. It supports kernel threads, loading and running user programs, and
a file system, but it implements all of these in a very simple way. In the Pintos projects,
you and your project team will strengthen its support in some of these areas.

For practical reasons, we will run Pintos projects in a system simulator, that is, a program
that simulates an 80x86 CPU and its peripheral devices accurately enough that unmodified
operating systems and software can run under it. In class we will use the Bochs simulator.
Pintos has also been tested with VMware Player and QEMU.

The project is demanding, especially regarding the understanding of the platform, but
the knowledge gained is rewarding. EDA092 has been building a reputation of taking a lot
of time, and deservedly so.

1.1 READ ME FIRST
At first, don’t get intimidated by the size of this document :).

e This chapter explains how to get started working with Pintos, instructions for working
in Chalmers STUDAT machines, the source code structure, building, debugging and
submission information. You should read the entire chapter before you start work on
the assignment.

e However, if you need an overview of what you are going to work on, you can check
Chapter 2 [Assignment Description], page 8 and especially section Section 2.1 [Assign-
ment Description Requirements], page 8 for the problems you are called to solve.

e Section 2.2 [Assignment Description Background], page 10 will help you obtain the
necessary background for solving the problems in Pintos.

e Appendix A [Reference Guide], page 21 serves as a reference for the entire Pintos.
Roughly speaking, this appendix replaces the man pages that you would get in a full
operating system.

1.2 Getting Started

To get started, you’ll have to log into a machine that Pintos can be built on. The EDA092
“officially supported” Pintos development machines are the STUDAT Linux machines. Fol-
low the instructions on how to include the path. We will test your code on these machines,
and the instructions given here assume this environment. We cannot provide support for
installing and working on Pintos on your own machine, but we provide instructions for
doing so nonetheless (see Appendix C [Installing Pintos|, page 65).

Once you’ve logged into one of these machines, either locally or remotely, start out by
adding our binaries directory to your PATH environment. Under bash, the standard login
shell, you can add the following line into your $HOME/.bashrc (or create it if it doesn’t
exist):

export PATH=/chalmers/sw/unsup64/phc/b/pkg/bochs-2.6.6/bin:$HOME/
pintos/src/utils:$PATH

Remember that files starting with a dot are hidden and may not show up in file managers.
Do not forget to reload the configuration using;:

http://bochs.sourceforge.net
http://www.vmware.com/
http://fabrice.bellard.free.fr/qemu/

Chapter 1: Introduction 3

sourc

e $HOME/.bashrc

or restart the terminal afterwards to apply the changes.

1.2.1 Source Tree Overview

Now you can fetch the source for Pintos from the Ping Pong page of the course and extract

it into your

tar x

home directory by executing

fz pintos-chalmers.tar.gz -C ~/

Let’s take a look at what’s inside. Here’s the directory structure that you should see in

‘pintos/src’:

‘threads/’

Source code for the base kernel, which you will modify in this assignment

‘userprog/’

Source code for the user program loader, which you will not need to modify.

‘vm/’ An almost empty directory. which you will not need to modify.

‘filesys/’

Source code for a basic file system. You will not need to modify this in this
assignment.

‘devices/’

Source code for I/O device interfacing: keyboard, timer, disk, etc. You will
modify the timer implementation in this assignment. Otherwise you should
have no need to change this code.

‘lib/’ An implementation of a subset of the standard C library. The code in this
directory is compiled into both the Pintos kernel and user programs that run
under it. In both kernel code and user programs, headers in this directory can
be included using the #include <...> notation. You should have no need to
modify this code.

‘lib/kernel/’

Parts of the C library that are included only in the Pintos kernel. This also
includes implementations of some data types that you are free to use in your
kernel code: bitmaps, doubly linked lists, and hash tables. In the kernel, headers
in this directory can be included using the #include <...> notation.

‘lib/user/’

Parts of the C library that are included only in Pintos user programs. In user
programs, headers in this directory can be included using the #include <...>
notation.

‘tests/’ Tests for each project. You can modify this code if it helps you test your
submission, but we will replace it with the originals before we run the tests.

‘examples/’

Example user programs for general purpose use. You should not need to use
this in this assignment.

‘misc/’

‘utils/’ These files may come in handy if you decide to try working with Pintos on your

own machine. Otherwise, you can ignore them.

https://pingpong.chalmers.se/courseId/4381/node.do?id=2098179&ts=1416591368114&u=-1630639235

Chapter 1: Introduction 4

1.2.2 Building Pintos

As the next step, build the source code supplied for the first project. First, cd into the
‘threads’ directory. Then, issue the ‘make’ command. This will create a ‘build’ directory
under ‘threads’, populate it with a ‘Makefile’ and a few subdirectories, and then build
the kernel inside. The entire build should take less than 30 seconds.

Following the build, the following are the interesting files in the ‘build’ directory:

‘Makefile’
A copy of ‘pintos/src/Makefile.build’. It describes how to build the kernel.
See [Adding Source Files]|, page 16, for more information.

‘kernel.o’
Object file for the entire kernel. This is the result of linking object files compiled
from each individual kernel source file into a single object file. It contains
debug information, so you can run GDB (see Section B.5 [GDB], page 57) or
backtrace (see Section B.4 [Backtraces], page 55) on it.

‘kernel .bin’
Memory image of the kernel, that is, the exact bytes loaded into memory to
run the Pintos kernel. This is just ‘kernel.o’ with debug information stripped
out, which saves a lot of space, which in turn keeps the kernel from bumping
up against a 512 kB size limit imposed by the kernel loader’s design.

‘loader.bin’
Memory image for the kernel loader, a small chunk of code written in assembly
language that reads the kernel from disk into memory and starts it up. It is
exactly 512 bytes long, a size fixed by the PC BIOS.

Subdirectories of ‘build’ contain object files (‘.0”) and dependency files (‘.d’), both
produced by the compiler. The dependency files tell make which source files need to be
recompiled when other source or header files are changed.

1.2.3 Running Pintos

We’ve supplied a program for conveniently running Pintos in a simulator, called pintos.
In the simplest case, you can invoke pintos as pintos argument.... Each argument is
passed to the Pintos kernel for it to act on.

Try it out. First cd into the newly created ‘build’ directory. Then issue the command
pintos run alarm-multiple, which passes the arguments run alarm-multiple to the Pin-
tos kernel. In these arguments, run instructs the kernel to run a test and alarm-multiple
is the test to run.

This command creates a ‘bochsrc.txt’ file, which is needed for running Bochs, and then
invoke Bochs. Bochs opens a new window that represents the simulated machine’s display,
and a BIOS message briefly flashes. Then Pintos boots and runs the alarm-multiple test
program, which outputs a few screenfuls of text. When it’s done, you can close Bochs by
clicking on the “Power” button in the window’s top right corner, or rerun the whole process
by clicking on the “Reset” button just to its left. The other buttons are not very useful for
our purposes.

Chapter 1: Introduction 5)

(If no window appeared at all, then you're probably logged in remotely and X forwarding
is not set up correctly. In this case, you can fix your X setup, or you can use the ‘-v’ option
to disable X output: pintos -v -- run alarm-multiple.)

The text printed by Pintos inside Bochs probably went by too quickly to read. However,
you've probably noticed by now that the same text was displayed in the terminal you used
to run pintos. This is because Pintos sends all output both to the VGA display and to the
first serial port, and by default the serial port is connected to Bochs’s stdin and stdout.
You can log serial output to a file by redirecting at the command line, e.g. pintos run
alarm-multiple > logfile.

The pintos program offers several options for configuring the simulator or the virtual
hardware. If you specify any options, they must precede the commands passed to the
Pintos kernel and be separated from them by ‘==’ so that the whole command looks like
pintos option... -- argument Invoke pintos without any arguments to see a list
of available options. You can run the simulator with a debugger (see Section B.5 [GDB],
page 57). You can set the amount of memory to give the VM. Finally, you can select how
you want VM output to be displayed: use ‘-v’ to turn off the VGA display, ‘-t’ to use your
terminal window as the VGA display instead of opening a new window (Bochs only), or
‘-s’ to suppress serial input from stdin and output to stdout.

The Pintos kernel has commands and options other than run. These are not very
interesting for now, but you can see a list of them using ‘-h’, e.g. pintos -h.

1.2.4 Debugging versus Testing

When you’re debugging code, it’s useful to be able to run a program twice and have it do
exactly the same thing. On second and later runs, you can make new observations without
having to discard or verify your old observations. This property is called “reproducibility.”
One of the simulators that Pintos supports, Bochs, can be set up for reproducibility, and
that’s the way that pintos invokes it by default.

Of course, a simulation can only be reproducible from one run to the next if its input
is the same each time. For simulating an entire computer, as we do, this means that every
part of the computer must be the same. For example, you must use the same command-line
argument, the same disks, the same version of Bochs, and you must not hit any keys on the
keyboard (because you could not be sure to hit them at exactly the same point each time)
during the runs.

While reproducibility is useful for debugging, it is a problem for testing thread synchro-
nization, an important part of most of the projects. In particular, when Bochs is set up for
reproducibility, timer interrupts will come at perfectly reproducible points, and therefore
so will thread switches. That means that running the same test several times doesn’t give
you any greater confidence in your code’s correctness than does running it only once.

So, to make your code easier to test, we've added a feature, called “jitter,” to Bochs,
that makes timer interrupts come at random intervals, but in a perfectly predictable way.
In particular, if you invoke pintos with the option ‘-j seed’, timer interrupts will come at
irregularly spaced intervals. Within a single seed value, execution will still be reproducible,
but timer behavior will change as seed is varied. Thus, for the highest degree of confidence
you should test your code with many seed values.

Chapter 1: Introduction 6

On the other hand, when Bochs runs in reproducible mode, timings are not realistic,
meaning that a “one-second” delay may be much shorter or even much longer than one
second. You can invoke pintos with a different option, ‘-r’; to set up Bochs for realistic
timings, in which a one-second delay should take approximately one second of real time.
Simulation in real-time mode is not reproducible, and options ‘-j’ and ‘-r’ are mutually
exclusive.

1.3 Legal and Ethical Issues

Pintos is distributed under a liberal license that allows free use, modification, and distribu-
tion. Students and others who work on Pintos own the code that they write and may use it
for any purpose. Pintos comes with NO WARRANTY, not even for MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See [License|, page 70, for details of the
license and lack of warranty.

In the context of Chalmers EDA092 course, please respect the spirit and the letter of the
honor code by refraining from reading any homework solutions available online or elsewhere.
Reading the source code for other operating system kernels, such as Linux or FreeBSD, is
allowed, but do not copy code from them literally. Please cite the code that inspired your
own in your design documentation.

1.4 Acknowledgements

The Pintos core and this documentation were originally written by Ben Pfaff
blp@cs.stanford.edu.

Additional features were contributed by Anthony Romano chz@vt.edu.

The GDB macros supplied with Pintos were written by Godmar Back gback@cs.vt.edu,
and their documentation is adapted from his work.

The original structure and form of Pintos was inspired by the Nachos instructional
operating system from the University of California, Berkeley ([Christopher]).

The Pintos projects and documentation originated with those designed for Nachos by
current and former CS 140 teaching assistants at Stanford University, including at least Yu
Ping, Greg Hutchins, Kelly Shaw, Paul Twohey, Sameer Qureshi, and John Rector.

Example code for monitors (see Section A.3.4 [Monitors|, page 32) is from classroom
slides originally by Dawson Engler and updated by Mendel Rosenblum.

The current version has been edited and adapted to the requirements of the
EDA092/DIT400 Operating Systems course of Chalmers University of Technology by
Yiannis Nikolakopoulos and Ivan Walulya, in collaboration with Bhavisya Goel, Vincenzo
Gulisano and Marina Papatriantafilou.

1.5 Trivia

Pintos originated as a replacement for Nachos with a similar design. Since then Pintos
has greatly diverged from the Nachos design. Pintos differs from Nachos in two important
ways. First, Pintos runs on real or simulated 80x86 hardware, but Nachos runs as a process
on a host operating system. Second, Pintos is written in C like most real-world operating
systems, but Nachos is written in C++.

mailto:blp@cs.stanford.edu
mailto:chz@vt.edu
mailto:gback@cs.vt.edu

Chapter 1: Introduction 7

Why the name “Pintos”? First, like nachos, pinto beans are a common Mexican food.
Second, Pintos is small and a “pint” is a small amount. Third, like drivers of the eponymous
car, students are likely to have trouble with blow-ups.

Chapter 2: Assignment Description 8

2 Assignment Description

In this assignment, we give you a minimally functional thread system. Your job is to extend
the functionality of this system to gain a better understanding of synchronization problems.

You will be working primarily in the ‘threads’ and the ‘devices’ directories for this
assignment. Compilation should be done in the ‘threads’ directory. Before you start
working on this project, and for its description to make sense, you should read the following
sections: Chapter 1 [Introduction]|, page 2 and Appendix B [Debugging Tools|, page 54.
You should at least skim the material from Section A.1 [Pintos Loading], page 21 through
Section A.5 [Memory Allocation], page 38, especially Section A.3 [Synchronization], page 29.

2.1 Requirements

2.1.1 Alarm Clock

One of the classic synchronization methods is busy-waiting, i.e. spinning in an endless
loop until some information from another thread/process stops you. An obvious drawback,
especially in uniprocessor machines, is that CPU cycles are wasted without any useful work
being done. In this task, you will get deeper in the synchronization implementation and try
to provide an alternative implementation of a sleep function.

Reimplement timer_sleep(), defined in ‘devices/timer.c’. Although a working im-
plementation is provided, it “busy waits,” that is, it spins in a loop checking the current
time and calling thread_yield() until enough time has gone by. Reimplement it to avoid
busy waiting.

void timer_sleep (int64_t ticks) [Function]
Suspends execution of the calling thread until time has advanced by at least
x timer ticks. Unless the system is otherwise idle, the thread need not wake up after
exactly x ticks. Just put it on the ready queue after they have waited for the right
amount of time.

timer_sleep() is useful for threads that operate in real-time, e.g. for blinking the
cursor once per second.

The argument to timer_sleep() is expressed in timer ticks, not in milliseconds or
any another unit. There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is
a macro defined in devices/timer.h. The default value is 100. We don’t recommend
changing this value, because any change is likely to cause many of the tests to fail.

Separate functions timer_msleep(), timer_usleep(), and timer_nsleep() do exist for
sleeping a specific number of milliseconds, microseconds, or nanoseconds, respectively, but
these will call timer_sleep() automatically when necessary. You do not need to modify
them.

If your delays seem too short or too long, reread the explanation of the
pintos (see Section 1.2.4 [Debugging versus Testing], page 5).

‘-r’ option to

Hint For a thread not to ’busy wait’ after calling the timer_sleep() function, the
thread has to block, thus changing its state from running to blocked. Please be
reminded that the processor does not store any information about the state of

Chapter 2: Assignment Description 9

each thread, a blocked thread should store the information about how long it
is blocked.

For each clock tick, a timer interrupt is triggered and the timer_interrupt ()
interrupt handler is executed. We exploit this interrupt handler to activate
sleeping threads and also update thread statistics. The thread_foreach()
function should be used to iterate over all blocked threads. Check if a blocked
thread is ready to wakeup and call thread_unblock() to activate the thread
or update its sleep timer.

2.1.2 Batch scheduling

In this task you are called to solve a simple batch scheduling problem, and more specifically
to handle the synchronization issues that arise when scheduling different batches of jobs.
The assumption is that our system is extended with an external processing accelerator (e.g.
a GPU or a co-processor) with X Processing Units (PUs). Tasks task_t are handled by one
thread each, and contain the appropriate data/results from/to the accelerator. However,
the communication bus with the accelerator is half duplex (i.e. one direction can be used
at a time) and has limited bandwidth as only 3 slots can be used by tasks at a time.

typedef struct {
int direction;
int priority;
} task_t

OneTask(task_t task) {
getSlot (task) ;
transferData(task);
leaveSlot (task);

}

In the code above, direction is either 0 or 1; it gives the direction in which the task’s
data are copied (from/to the accelerator respectively). The parameter priority indicates
if this is a high priority task (when it is set to the value 1), in which case it should have
priority over other tasks. When such a task needs to send data, it should be allowed access
as soon as possible.

The main part of this assignment is to:
e write the procedures getSlot and leaveSlot, using semaphores only.

e You must also implement the transferData procedure, but this should just print out
a debug message upon entrance, sleep the thread for a random amount of time, and
print another debug message upon exit.

e getSlot must not return (i.e., it blocks the thread) until it is safe for the thread to
send the data through the bus in the given direction.

e leaveSlot is called to indicate that the caller has finished sending data; leaveSlot
should take steps to let additional tasks send data (i.e., unblock them).

This is a lightly used accelerator, so you do not need to guarantee fairness or freedom
from starvation, other than what has been indicated for high priority tasks.

Chapter 2: Assignment Description 10

Furthermore you have to:

e implement the function batchScheduler that takes four parameters which represent
the number of tasks of each type and direction that use the bus (these are parameters
to the functions invoked by the tests we provide). For each task, the main thread must
spawn a new thread that executes the OneTask procedure, which you must implement.

Your solution will be graded through code inspection to verify the correctness
of the synchronization algorithms (in addition to basic functionality checks of the
running code). To accomplish this task, implement the function prototypes provided in
‘devices/batch-scheduler.c’ enforcing the required constraints.

2.1.3 Design Document

Before you turn in your assignment, you must copy the assignment design document tem-
plate (‘project.tmpl’) into your source tree under the name ‘pintos/DESIGNDOC’ and fill
it in. We recommend that you read the design document template before you start working
on the assignment.

2.2 Background

2.2.1 Understanding Threads

The first step is to read and understand the code for the initial thread system. Pintos
already implements thread creation and thread completion, a simple scheduler to switch
between threads, and synchronization primitives (semaphores, locks, condition variables,
and optimization barriers).

Some of this code might seem slightly mysterious. If you haven’t already compiled and
run the base system, as described in the introduction (see Chapter 1 [Introduction|, page 2),
you should do so now. You can read through parts of the source code to see what’s going
on. If you like, you can add calls to printf () almost anywhere, then recompile and run to
see what happens and in what order. You can also run the kernel in a debugger and set
breakpoints at interesting spots, single-step through code and examine data, and so on.

When a thread is created, you are creating a new context to be scheduled. You provide
a function to be run in this context as an argument to thread_create(). The first time
the thread is scheduled and runs, it starts from the beginning of that function and executes
in that context. When the function returns, the thread terminates. Each thread, there-
fore, acts like a mini-program running inside Pintos, with the function passed to thread_
create() acting like main().

At any given time, exactly one thread runs and the rest, if any, become inactive. The
scheduler decides which thread to run next. (If no thread is ready to run at any given time,
then the special “idle” thread, implemented in idle(), runs.) Synchronization primitives
can force context switches when one thread needs to wait for another thread to do something.

The mechanics of a context switch are in ‘threads/switch.S’, which is 80x86 assembly
code. (You don’t have to understand it.) It saves the state of the currently running thread
and restores the state of the thread we're switching to.

Using the GDB debugger, slowly trace through a context switch to see what happens
(see Section B.5 [GDBJ, page 57). You can set a breakpoint on schedule() to start out,

project.tmpl

Chapter 2: Assignment Description 11

and then single-step from there.! Be sure to keep track of each thread’s address and state,
and what procedures are on the call stack for each thread. You will notice that when one
thread calls switch_threads(), another thread starts running, and the first thing the new
thread does is to return from switch_threads(). You will understand the thread system
once you understand why and how the switch_threads () that gets called is different from
the switch_threads() that returns. See Section A.2.3 [Thread Switching], page 28, for
more information.

Warning: In Pintos, each thread is assigned a small, fixed-size execution stack just under
4 kB in size. The kernel tries to detect stack overflow, but it cannot do so perfectly. You may
cause bizarre problems, such as mysterious kernel panics, if you declare large data structures
as non-static local variables, e.g. ‘int buf [1000] ;’. Alternatives to stack allocation include
the page allocator and the block allocator (see Section A.5 [Memory Allocation], page 38).

2.2.2 Source Files

Here is a brief overview of the files in the ‘threads’ directory. You will not need to modify
most of this code, but the hope is that presenting this overview will give you a start on
what code to look at.

‘loader.S’

‘loader.h’
The kernel loader. Assembles to 512 bytes of code and data that the PC BIOS
loads into memory and which in turn finds the kernel on disk, loads it into
memory, and jumps to start () in ‘start.S’. See Section A.1.1 [Pintos Loader],
page 21, for details. You should not need to look at this code or modify it.

‘start.S’ Does basic setup needed for memory protection and 32-bit operation on 80x86
CPUs. Unlike the loader, this code is actually part of the kernel. See Sec-
tion A.1.2 [Low-Level Kernel Initialization], page 22, for details.

‘kernel.lds.S’

The linker script used to link the kernel. Sets the load address of the kernel
and arranges for ‘start.S’ to be near the beginning of the kernel image. See
Section A.1.1 [Pintos Loader], page 21, for details. Again, you should not need
to look at this code or modify it, but it’s here in case you’re curious.

‘init.c’

‘init.h’ Kernel initialization, including main(), the kernel’s “main program.” You
should look over main() at least to see what gets initialized. You might want
to add your own initialization code here. See Section A.1.3 [High-Level Kernel
Initialization], page 22, for details.

‘thread.c’

‘thread.h’
Basic thread support. Much of your work will take place in these files.
‘thread.h’ defines struct thread, which you are likely to modify in all four
projects. See Section A.2.1 [struct thread], page 24 and Section A.2 [Threads],
page 24 for more information.

! GDB might tell you that schedule () doesn’t exist, which is arguably a GDB bug. You can work around
this by setting the breakpoint by filename and line number, e.g. break thread.c:1n where In is the line
number of the first declaration in schedule().

Chapter 2: Assignment Description 12

‘switch.
‘switch.

‘palloc.
‘palloc.

‘malloc.
‘malloc.

S7

Assembly language routine for switching threads. Already discussed above. See
Section A.2.2 [Thread Functions|, page 26, for more information.

Page allocator, which hands out system memory in multiples of 4 kB pages.
See Section A.5.1 [Page Allocator|, page 38, for more information.

A simple implementation of malloc() and free() for the kernel. See Sec-
tion A.5.2 [Block Allocator]|, page 40, for more information.

‘interrupt.c’
‘interrupt.h’

Basic interrupt handling and functions for turning interrupts on and off. See
Section A.4 [Interrupt Handling], page 35, for more information.

‘intr-stubs.S’
‘intr-stubs.h’

‘synch.c’
‘synch.h’

‘4o0.h’

‘vaddr.h’

‘pte.h’

‘flags.h’

Assembly code for low-level interrupt handling. See Section A.4.1 [Interrupt
Infrastructure], page 35, for more information.

Basic synchronization primitives: semaphores, locks, condition variables, and
optimization barriers. You will need to use these for synchronization in all four
projects. See Section A.3 [Synchronization]|, page 29, for more information.

Functions for I/O port access. This is mostly used by source code in the
‘devices’ directory that you won’t have to touch.

Functions and macros for working with virtual addresses and page table entries.

Macros that define a few bits in the 80x86 “flags” register. Probably of no in-
terest. See [IA32-v1], section 3.4.3, “EFLAGS Register,” for more information.

2.2.2.1 ‘devices’ code

The basic threaded kernel also includes these files in the ‘devices’ directory:

‘timer.c’
‘timer.h’ System timer that ticks, by default, 100 times per second. You will modify this

‘vga.c’
‘vga.h’

code in this project.

VGA display driver. Responsible for writing text to the screen. You should
have no need to look at this code. printf () calls into the VGA display driver
for you, so there’s little reason to call this code yourself.

Chapter 2: Assignment Description 13

‘serial.c’

‘serial.h’
Serial port driver. Again, printf () calls this code for you, so you don’t need
to do so yourself. It handles serial input by passing it to the input layer (see
below).

‘block.c’

‘block.h’ An abstraction layer for block devices, that is, random-access, disk-like devices
that are organized as arrays of fixed-size blocks. Out of the box, Pintos supports
two types of block devices: IDE disks and partitions.

‘ide.c’
‘ide.h’ Supports reading and writing sectors on up to 4 IDE disks.

‘partition.c’

‘partition.h’
Understands the structure of partitions on disks, allowing a single disk to be
carved up into multiple regions (partitions) for independent use.

‘kbd.c’

‘kbd.h’ Keyboard driver. Handles keystrokes passing them to the input layer (see be-
low).

‘input.c’

‘input.h’ Input layer. Queues input characters passed along by the keyboard or serial
drivers.

‘intq.c’

‘intq.h’ Interrupt queue, for managing a circular queue that both kernel threads and
interrupt handlers want to access. Used by the keyboard and serial drivers.

‘rtc.c’

‘rtc.h’ Real-time clock driver, to enable the kernel to determine the current date and
time. By default, this is only used by ‘thread/init.c’ to choose an initial seed
for the random number generator.

‘speaker.c’
‘speaker.h’
Driver that can produce tones on the PC speaker.

3 s Y

pit.c

‘pit.h’ Code to configure the 8254 Programmable Interrupt Timer. This code is used
by both ‘devices/timer.c’ and ‘devices/speaker.c’ because each device uses
one of the PIT’s output channel.

2.2.2.2 ‘1ib’ files

Finally, ‘1ib’ and ‘lib/kernel’ contain useful library routines. (‘lib/user’ can be used
by user programs but it is not part of the kernel, thus not useful for you in this project.)
Here’s a few more details:

Chapter 2: Assignment Description 14

‘ctype.h’

‘inttypes.h’

‘limits.h’

‘stdarg.h’

‘stdbool.h’

‘stddef.n’

‘stdint.h’

‘stdio.c’

‘stdio.h’

‘stdlib.c’

‘stdlib.h’

‘string.c’

‘string.h’
A subset of the standard C library. See (undefined) [C99], page (undefined),
for information on a few recently introduced pieces of the C library that you
might not have encountered before. See (undefined) [Unsafe String Functions],
page (undefined), for information on what’s been intentionally left out for safety.

‘debug.c’

‘debug.h’ Functions and macros to aid debugging. See Appendix B [Debugging Tools],
page 54, for more information.

‘random. c’

‘random.h’
Pseudo-random number generator. The actual sequence of random values will
not vary from one Pintos run to another, unless you do one of three things:
specify a new random seed value on the ‘-rs’ kernel command-line option on
each run, or use a simulator other than Bochs, or specify the ‘-r’ option to
pintos.

‘round.h’ Macros for rounding.

‘syscall-nr.h’

System call numbers.

‘kernel/list.c’
‘kernel/list.h’

Doubly linked list implementation. Used all over the Pintos code, and you’ll
probably want to use it a few places yourself in project 1.

‘kernel/bitmap.c’
‘kernel/bitmap.h’

Bitmap implementation. You can use this in your code if you like, but you
probably won’t have any need for it in project 1.

‘kernel/hash.c’
‘kernel/hash.h’

Hash table implementation.

Chapter 2: Assignment Description 15

‘kernel/console.c’
‘kernel/console.h’
‘kernel/stdio.h’
Implements printf () and a few other functions.

2.2.3 Synchronization

Proper synchronization is an important part of the solutions to these problems. Any syn-
chronization problem can be easily solved by turning interrupts off: while interrupts are off,
there is no concurrency, so there’s no possibility for race conditions. Therefore, it’s tempting
to solve all synchronization problems this way, but don’t. Instead, use semaphores, locks,
and condition variables to solve the bulk of your synchronization problems. Read the tour
section on synchronization (see Section A.3 [Synchronization], page 29) or the comments in
‘threads/synch.c’ if you're unsure what synchronization primitives may be used in what
situations.

In the Pintos projects, the only class of problem best solved by disabling interrupts is
coordinating data shared between a kernel thread and an interrupt handler. Because inter-
rupt handlers can’t sleep, they can’t acquire locks. This means that data shared between
kernel threads and an interrupt handler must be protected within a kernel thread by turning
off interrupts.

This project only requires accessing a little bit of thread state from interrupt handlers.
For the alarm clock, the timer interrupt needs to wake up sleeping threads.

When you do turn off interrupts, take care to do so for the least amount of code possible,
or you can end up losing important things such as timer ticks or input events. Turning off
interrupts also increases the interrupt handling latency, which can make a machine feel
sluggish if taken too far.

The synchronization primitives themselves in ‘synch.c’ are implemented by disabling
interrupts. You may need to increase the amount of code that runs with interrupts disabled
here, but you should still try to keep it to a minimum.

Disabling interrupts can be useful for debugging, if you want to make sure that a section
of code is not interrupted. You should remove debugging code before turning in your
assignment. (Don’t just comment it out, because that can make the code difficult to read.)

There should be no busy waiting in your submission. A tight loop that calls thread_
yield() is one form of busy waiting.

2.2.4 Development Suggestions

In the past, many groups divided the assignment into pieces, then each group member
worked on his or her piece until just before the deadline, at which time the group reconvened
to combine their code and submit. This is a bad idea. We do not recommend this approach.
Groups that do this often find that two changes conflict with each other, requiring lots of
last-minute debugging. Some groups who have done this have turned in code that did not
even compile or boot, much less pass any tests.

Instead, we recommend integrating your team’s changes early and often, using a source
code control system such as SVN or GIT. This is less likely to produce surprises, because
everyone can see everyone else’s code as it is written, instead of just when it is finished.

Chapter 2: Assignment Description 16

These systems also make it possible to review changes and, when a change introduces a
bug, drop back to working versions of code.

You should expect to run into bugs that you simply don’t understand while working on
this Lab assignment. When you do, reread the appendix on debugging tools, which is filled
with useful debugging tips that should help you to get back up to speed (see Appendix B
[Debugging Tools|, page 54). Be sure to read the section on backtraces (see Section B.4
[Backtraces], page 55), which will help you to get the most out of every kernel panic or
assertion failure.

2.3 FAQ

How do I update the ‘Makefile’s when I add a new source file?

To add a ‘.c’ file, edit the top-level ‘Makefile.build’. Add the new file to
variable ‘dir_SRC’, where dir is the directory where you added the file. For
this project, that means you should add it to threads_SRC or devices_SRC.
Then run make. If your new file doesn’t get compiled, run make clean and then
try again.

When you modify the top-level ‘Makefile.build’ and re-run make, the modified
version should be automatically copied to ‘threads/build/Makefile’. The
converse is not true, so any changes will be lost the next time you run make
clean from the ‘threads’ directory. Unless your changes are truly temporary,
you should prefer to edit ‘Makefile.build’.

A new ‘.h’ file does not require editing the ‘Makefile’s.

What does warning: no previous prototype for ‘func’ mean?
It means that you defined a non-static function without preceding it by a
prototype. Because non-static functions are intended for use by other ‘.c’
files, for safety they should be prototyped in a header file included before their
definition. To fix the problem, add a prototype in a header file that you include,

or, if the function isn’t actually used by other ‘.c’ files, make it static.

What is the interval between timer interrupts?
Timer interrupts occur TIMER_FREQ times per second. You can adjust this value
by editing ‘devices/timer.h’. The default is 100 Hz.

We don’t recommend changing this value, because any changes are likely to
cause many of the tests to fail.

How long is a time slice?
There are TIME_SLICE ticks per time slice. This macro is declared in
‘threads/thread.c’. The default is 4 ticks.

We don’t recommend changing this value, because any changes are likely to
cause many of the tests to fail.

How do I run the tests?
See Section 3.1 [Testing], page 18.

Why do I get a test failure in pass()?
You are probably looking at a backtrace that looks something like this:

Chapter 2: Assignment Description 17

0xc0108810: debug_panic (lib/kernel/debug.c:32)

0xc010a99f: pass (tests/threads/tests.c:93)

0xc010bdd3: test_mlfgs_load_1 (...threads/mlfgs-load-1.c:33)
0xc010a8cf: run_test (tests/threads/tests.c:51)

0xc0100452: run_task (threads/init.c:283)

0xc0100536: run_actions (threads/init.c:333)

0xc01000bb: main (threads/init.c:137)

This is just confusing output from the backtrace program. It does not actu-
ally mean that pass() called debug_panic(). In fact, fail() called debug_
panic() (via the PANIC() macro). GCC knows that debug_panic() does not
return, because it is declared NO_RETURN (see Section B.3 [Function and Pa-
rameter Attributes|, page 54), so it doesn’t include any code in fail() to take
control when debug_panic() returns. This means that the return address on
the stack looks like it is at the beginning of the function that happens to follow
fail() in memory, which in this case happens to be pass().

See Section B.4 [Backtraces], page 55, for more information.

How do interrupts get re-enabled in the new thread following schedule()?
Every path into schedule () disables interrupts. They eventually get re-enabled
by the next thread to be scheduled. Consider the possibilities: the new thread
is running in switch_thread() (but see below), which is called by schedule(),
which is called by one of a few possible functions:

e thread_exit(), but we’ll never switch back into such a thread, so it’s
uninteresting.
e thread_yield(), which immediately restores the interrupt level upon re-
turn from schedule().
e thread_block(), which is called from multiple places:
— sema_down (), which restores the interrupt level before returning.

— idle(), which enables interrupts with an explicit assembly STI in-
struction.

— wait() in ‘devices/intq.c’, whose callers are responsible for re-
enabling interrupts.

There is a special case when a newly created thread runs for the first time. Such
a thread calls intr_enable () as the first action in kernel_thread (), which is
at the bottom of the call stack for every kernel thread but the first.

2.3.1 Alarm Clock FAQ

Do I need to account for timer values overflowing?
Don’t worry about the possibility of timer values overflowing. Timer values are
expressed as signed 64-bit numbers, which at 100 ticks per second should be
good for almost 2,924,712,087 years. By then, we expect Pintos to have been
phased out of the EDA092 curriculum.

Chapter 3: How to test - What to submit 18

3 How to test - What to submit

We will grade your assignments based on both test results and design quality. The grade
will be Pass or Fail.

3.1 Testing

Each task has several tests, each of which has a name beginning with ‘tests’. To completely
test your submission, invoke make check from the project ‘build’ directory. This will build
and run each test and print a “pass” or “fail” message for each one. When a test fails, make
check also prints some details of the reason for failure. After running all the tests, make
check also prints a summary of the test results.

You can also run individual tests one at a time. A given test t writes its output to
‘t.output’, then a script scores the output as “pass” or “fail” and writes the verdict to
‘t.result’. To run and grade a single test, make the ‘.result’ file explicitly from the
‘build’ directory, e.g. make tests/threads/alarm-multiple.result. If make says that
the test result is up-to-date, but you want to re-run it anyway, either run make clean or
delete the ‘.output’ file by hand.

By default, each test provides feedback only at completion, not during its run. If you
prefer, you can observe the progress of each test by specifying ‘VERBOSE=1" on the make
command line, as in make check VERBOSE=1. You can also provide arbitrary options to the
pintos run by the tests with ‘PINTOSOPTS=’... "’ e.g. make check PINTOSOPTS="-j 1’ to
select a jitter value of 1 (see Section 1.2.4 [Debugging versus Testing], page 5).

All of the tests and related files are in ‘pintos/src/tests’. Before we test your sub-
mission, we will replace the contents of that directory by a pristine, unmodified copy, to
ensure that the correct tests are used. Thus, you can modify some of the tests if that helps
in debugging, but we will run the originals.

All software has bugs, so some of our tests may be flawed. If you think a test failure is
a bug in the test, not a bug in your code, please point it out. We will look at it and fix it
if necessary.

Please don’t try to take advantage of our generosity in giving out our test suite. Your
code has to work properly in the general case, not just for the test cases we supply. For
example, it would be unacceptable to explicitly base the kernel’s behavior on the name of
the running test case. Such attempts to side-step the test cases will receive no credit. If
you think your solution may be in a gray area here, please ask us about it.

3.2 Submission

We will judge your design based on the design document and the source code that you
submit. We will read your entire design document and much of your source code. Submit
a tar.gz of your pintos directory in including all your pintos source code and your design
document in the related Ping Pong page.

3.2.1 Design Document

We provide a design document template for the project. For each significant part of the
project, the template asks questions in four areas:

Chapter 3: How to test - What to submit 19

Data Structures

Algorithms

The instructions for this section are always the same:

Copy here the declaration of each new or changed struct or struct
member, global or static variable, typedef, or enumeration. Iden-
tify the purpose of each in 25 words or less.

The first part is mechanical. Just copy new or modified declarations into the
design document, to highlight for us the actual changes to data structures. Each
declaration should include the comment that should accompany it in the source
code (see below).

We also ask for a very brief description of the purpose of each new or changed
data structure. The limit of 25 words or less is a guideline intended to save
your time and avoid duplication with later areas.

This is where you tell us how your code works, through questions that probe
your understanding of your code. We might not be able to easily figure it out
from the code, because many creative solutions exist for most OS problems.
Help us out a little.

Your answers should be at a level below the high level description of require-
ments given in the assignment. We have read the assignment too, so it is
unnecessary to repeat or rephrase what is stated there. On the other hand,
your answers should be at a level above the low level of the code itself. Don’t
give a line-by-line run-down of what your code does. Instead, use your answers
to explain how your code works to implement the requirements.

Synchronization

Rationale

An operating system kernel is a complex, multithreaded program, in which
synchronizing multiple threads can be difficult. This section asks about how
you chose to synchronize this particular type of activity.

Whereas the other sections primarily ask “what” and “how,” the rationale
section concentrates on “why.” This is where we ask you to justify some design
decisions, by explaining why the choices you made are better than alternatives.
You may be able to state these in terms of time and space complexity, which
can be made as rough or informal arguments (formal language or proofs are
unnecessary).

An incomplete, evasive, or non-responsive design document or one that strays from the
template without good reason may be penalized. Incorrect capitalization, punctuation,
spelling, or grammar can also cost points.

3.2.2 Source Code

Your design will also be judged by looking at your source code. We will typically look at
the differences between the original Pintos source tree and your submission, based on the
output of a command like diff -urpb pintos.orig pintos.submitted. We will try to
match up your description of the design with the code submitted. Important discrepancies

Chapter 3: How to test - What to submit 20

between the description and the actual code will be penalized, as will be any bugs we find
by spot checks.

Pintos is written in a consistent style. Make your additions and modifications in existing
Pintos source files blend in, not stick out. In new source files, adopt the existing Pintos style
by preference, but make your code self-consistent at the very least. There should not be
a patchwork of different styles that makes it obvious that three different people wrote the
code. Use horizontal and vertical white space to make code readable. Add a brief comment
on every structure, structure member, global or static variable, typedef, enumeration, and
function definition. Update existing comments as you modify code. Don’t comment out or
use the preprocessor to ignore blocks of code (instead, remove it entirely). Use assertions to
document key invariants. Decompose code into functions for clarity. Code that is difficult to
understand because it violates these or other “common sense” software engineering practices
will be penalized.

In the end, remember your audience. Code is written primarily to be read by humans.
It has to be acceptable to the compiler too, but the compiler doesn’t care about how it
looks or how well it is written.

Appendix A: Reference Guide 21

Appendix A Reference Guide

This chapter is a reference for the Pintos code. The reference guide does not cover all of the
code in Pintos, but it does cover those pieces that students most often find troublesome.
You may find that you want to read each part of the reference guide as you work on the
project where it becomes important.

We recommend using “tags” to follow along with references to function and variable
names (see (undefined) [Tags]|, page (undefined)).

A.1 Loading

This section covers the Pintos loader and basic kernel initialization.

A.1.1 The Loader

The first part of Pintos that runs is the loader, in ‘threads/loader.S’. The PC BIOS
loads the loader into memory. The loader, in turn, is responsible for finding the kernel
on disk, loading it into memory, and then jumping to its start. It’s not important to
understand exactly how the loader works, but if you're interested, read on. You should
probably read along with the loader’s source. You should also understand the basics of the
80x86 architecture as described by chapter 3, “Basic Execution Environment,” of [[A32-v1].

The PC BIOS loads the loader from the first sector of the first hard disk, called the
master boot record (MBR). PC conventions reserve 64 bytes of the MBR for the partition
table, and Pintos uses about 128 additional bytes for kernel command-line arguments. This
leaves a little over 300 bytes for the loader’s own code. This is a severe restriction that
means, practically speaking, the loader must be written in assembly language.

The Pintos loader and kernel don’t have to be on the same disk, nor does is the kernel
required to be in any particular location on a given disk. The loader’s first job, then, is
to find the kernel by reading the partition table on each hard disk, looking for a bootable
partition of the type used for a Pintos kernel.

When the loader finds a bootable kernel partition, it reads the partition’s contents into
memory at physical address 128 kB. The kernel is at the beginning of the partition, which
might be larger than necessary due to partition boundary alignment conventions, so the
loader reads no more than 512 kB (and the Pintos build process will refuse to produce
kernels larger than that). Reading more data than this would cross into the region from
640 kB to 1 MB that the PC architecture reserves for hardware and the BIOS, and a
standard PC BIOS does not provide any means to load the kernel above 1 MB.

The loader’s final job is to extract the entry point from the loaded kernel image and
transfer control to it. The entry point is not at a predictable location, but the kernel’s ELF
header contains a pointer to it. The loader extracts the pointer and jumps to the location
it points to.

The Pintos kernel command line is stored in the boot loader. The pintos program
actually modifies a copy of the boot loader on disk each time it runs the kernel, inserting
whatever command-line arguments the user supplies to the kernel, and then the kernel at
boot time reads those arguments out of the boot loader in memory. This is not an elegant
solution, but it is simple and effective.

Appendix A: Reference Guide 22

A.1.2 Low-Level Kernel Initialization

The loader’s last action is to transfer control to the kernel’s entry point, which is start ()
in ‘threads/start.S’. The job of this code is to switch the CPU from legacy 16-bit “real
mode” into the 32-bit “protected mode” used by all modern 80x86 operating systems.

The startup code’s first task is actually to obtain the machine’s memory size, by asking
the BIOS for the PC’s memory size. The simplest BIOS function to do this can only detect
up to 64 MB of RAM, so that’s the practical limit that Pintos can support. The function
stores the memory size, in pages, in global variable init_ram_pages.

The first part of CPU initialization is to enable the A20 line, that is, the CPU’s address
line numbered 20. For historical reasons, PCs boot with this address line fixed at 0, which
means that attempts to access memory beyond the first 1 MB (2 raised to the 20th power)
will fail. Pintos wants to access more memory than this, so we have to enable it.

Next, the loader creates a basic page table. This page table maps the 64 MB at the
base of virtual memory (starting at virtual address 0) directly to the identical physical
addresses. It also maps the same physical memory starting at virtual address LOADER_
PHYS_BASE, which defaults to 0xc0000000 (3 GB). The Pintos kernel only wants the latter
mapping, but there’s a chicken-and-egg problem if we don’t include the former: our current
virtual address is roughly 0x20000, the location where the loader put us, and we can’t jump
to 0xc0020000 until we turn on the page table, but if we turn on the page table without
jumping there, then we’ve just pulled the rug out from under ourselves.

After the page table is initialized, we load the CPU’s control registers to turn on protected
mode and paging, and set up the segment registers. We aren’t yet equipped to handle
interrupts in protected mode, so we disable interrupts. The final step is to call main().

A.1.3 High-Level Kernel Initialization

The kernel proper starts with the main() function. The main() function is written in C,
as will be most of the code we encounter in Pintos from here on out.

When main() starts, the system is in a pretty raw state. We’re in 32-bit protected mode
with paging enabled, but hardly anything else is ready. Thus, the main() function consists
primarily of calls into other Pintos modules’ initialization functions. These are usually
named module_init (), where module is the module’s name, ‘module.c’ is the module’s
source code, and ‘module.h’ is the module’s header.

The first step in main() is to call bss_init (), which clears out the kernel’s “BSS”,
which is the traditional name for a segment that should be initialized to all zeros. In most
C implementations, whenever you declare a variable outside a function without providing
an initializer, that variable goes into the BSS. Because it’s all zeros, the BSS isn’t stored in
the image that the loader brought into memory. We just use memset () to zero it out.

Next, main() calls read_command_line() to break the kernel command line into argu-
ments, then parse_options() to read any options at the beginning of the command line.
(Actions specified on the command line execute later.)

thread_init () initializes the thread system. We will defer full discussion to our dis-
cussion of Pintos threads below. It is called so early in initialization because a valid thread
structure is a prerequisite for acquiring a lock, and lock acquisition in turn is important to
other Pintos subsystems. Then we initialize the console and print a startup message to the
console.

Appendix A: Reference Guide 23

The next block of functions we call initializes the kernel’s memory system. palloc_
init () sets up the kernel page allocator, which doles out memory one or more pages at a
time (see Section A.5.1 [Page Allocator], page 38). malloc_init () sets up the allocator that
handles allocations of arbitrary-size blocks of memory (see Section A.5.2 [Block Allocator],
page 40). paging_init () sets up a page table for the kernel (see Section A.7 [Page Table],
page 42).

In projects 2 and later, main() also calls tss_init() and gdt_init().

The next set of calls initializes the interrupt system. intr_init() sets up the CPU’s
interrupt descriptor table (IDT) to ready it for interrupt handling (see Section A.4.1 [In-
terrupt Infrastructurel, page 35), then timer_init () and kbd_init () prepare for handling
timer interrupts and keyboard interrupts, respectively. input_init() sets up to merge se-
rial and keyboard input into one stream. In projects 2 and later, we also prepare to handle
interrupts caused by user programs using exception_init() and syscall_init().

Now that interrupts are set up, we can start the scheduler with thread_start (), which
creates the idle thread and enables interrupts. With interrupts enabled, interrupt-driven
serial port I/O becomes possible, so we use serial_init_queue() to switch to that mode.
Finally, timer_calibrate() calibrates the timer for accurate short delays.

If the file system is compiled in, as it will starting in project 2, we initialize the IDE
disks with ide_init (), then the file system with filesys_init().

Boot is complete, so we print a message.

Function run_actions() now parses and executes actions specified on the kernel com-
mand line, such as run to run a test (in project 1) or a user program (in later projects).

Finally, if ‘-q’ was specified on the kernel command line, we call shutdown_power_off ()
to terminate the machine simulator. Otherwise, main() calls thread_exit (), which allows
any other running threads to continue running.

A.1.4 Physical Memory Map

Memory Range Owner Contents

00000000-000003ff CPU Real mode interrupt table.

00000400-000005ff BIOS Miscellaneous data area.

00000600-00007bff — —

00007c00-00007dff Pintos Loader.

0000e000—-0000efff Pintos Stack for loader; kernel stack and
struct thread for initial kernel
thread.

0000£000-0000ffff Pintos Page directory for startup code.

00010000-00020000 Pintos Page tables for startup code.

00020000—-0009ffff Pintos Kernel code, data, and uninitialized
data segments.

000a0000-000bffff Video VGA display memory.

000c0000-000effff Hardware Reserved for expansion card RAM
and ROM.

000£0000-000fffff BIOS ROM BIOS.

Appendix A: Reference Guide 24

00100000-03ffffff Pintos Dynamic memory allocation.
A.2 Threads

A.2.1 struct thread

The main Pintos data structure for threads is struct thread, declared in
‘threads/thread.h’.

struct thread [Structure]
Represents a thread or a user process. In the projects, you will have to add your own
members to struct thread. You may also change or delete the definitions of existing
members.

Every struct thread occupies the beginning of its own page of memory. The rest of

the page is used for the thread’s stack, which grows downward from the end of the
page. It looks like this:

kernel stack
I
I
v

grows downward

sizeof (struct thread) +--—————------"""""————————— +
| magic [
| : |
| |
| status |
I tid |

OkB +--——"——-"---"--"-"-"-""" +

This has two consequences. First, struct thread must not be allowed to grow too
big. If it does, then there will not be enough room for the kernel stack. The base
struct thread is only a few bytes in size. It probably should stay well under 1 kB.

Second, kernel stacks must not be allowed to grow too large. If a stack overflows, it will
corrupt the thread state. Thus, kernel functions should not allocate large structures
or arrays as non-static local variables. Use dynamic allocation with malloc() or
palloc_get_page() instead (see Section A.5 [Memory Allocation|, page 38).

tid_t tid [Member of struct thread]
The thread’s thread identifier or tid. Every thread must have a tid that is unique
over the entire lifetime of the kernel. By default, tid_t is a typedef for int and each

Appendix A: Reference Guide 25

new thread receives the numerically next higher tid, starting from 1 for the initial
process. You can change the type and the numbering scheme if you like.

enum thread_status status [Member of struct thread]
The thread’s state, one of the following:

THREAD_RUNNING [Thread State]
The thread is running. Exactly one thread is running at a given time. thread_
current () returns the running thread.

THREAD_READY [Thread State]
The thread is ready to run, but it’s not running right now. The thread could
be selected to run the next time the scheduler is invoked. Ready threads are
kept in a doubly linked list called ready_list.

THREAD_BLOCKED [Thread State]
The thread is waiting for something, e.g. a lock to become available, an inter-
rupt to be invoked. The thread won’t be scheduled again until it transitions to
the THREAD_READY state with a call to thread_unblock(). This is most conve-
niently done indirectly, using one of the Pintos synchronization primitives that
block and unblock threads automatically (see Section A.3 [Synchronization],
page 29).

There is no a priori way to tell what a blocked thread is waiting for, but a
backtrace can help (see Section B.4 [Backtraces|, page 55).

THREAD_DYING [Thread State]
The thread will be destroyed by the scheduler after switching to the next thread.

char name[16] [Member of struct thread]
The thread’s name as a string, or at least the first few characters of it.

uint8_t * stack [Member of struct thread|
Every thread has its own stack to keep track of its state. When the thread is running,
the CPU’s stack pointer register tracks the top of the stack and this member is unused.
But when the CPU switches to another thread, this member saves the thread’s stack
pointer. No other members are needed to save the thread’s registers, because the
other registers that must be saved are saved on the stack.

When an interrupt occurs, whether in the kernel or a user program, an struct intr_
frame is pushed onto the stack. When the interrupt occurs in a user program, the
struct intr_frame is always at the very top of the page. See Section A.4 [Interrupt
Handling], page 35, for more information.

int priority [Member of struct thread|
A thread priority, ranging from PRI_MIN (0) to PRI_MAX (63). Lower numbers corre-
spond to lower priorities, so that priority 0 is the lowest priority and priority 63 is the
highest. Pintos as provided ignores thread priorities, but you will implement priority
scheduling in project 1 (see (undefined) [Priority Scheduling], page (undefined)).

Appendix A: Reference Guide 26

struct list_elem allelem [Member of struct thread]
This “list element” is used to link the thread into the list of all threads. Each thread
is inserted into this list when it is created and removed when it exits. The thread_
foreach() function should be used to iterate over all threads.

struct list_elem elem [Member of struct thread|
A “list element” used to put the thread into doubly linked lists, either ready_list
(the list of threads ready to run) or a list of threads waiting on a semaphore in sema_
down(). It can do double duty because a thread waiting on a semaphore is not ready,
and vice versa.

uint32_t * pagedir [Member of struct thread|
Only present in project 2 and later. See (undefined) [Page Tables|, page (undefined).

unsigned magic [Member of struct thread]
Always set to THREAD_MAGIC, which is just an arbitrary number defined in
‘threads/thread.c’, and used to detect stack overflow. thread_current ()

checks that the magic member of the running thread’s struct thread is set to
THREAD_MAGIC. Stack overflow tends to change this value, triggering the assertion.
For greatest benefit, as you add members to struct thread, leave magic at the end.

A.2.2 Thread Functions

‘threads/thread.c’ implements several public functions for thread support. Let’s take a
look at the most useful:

void thread_init (void) [Function]
Called by main() to initialize the thread system. Its main purpose is to create a
struct thread for Pintos’s initial thread. This is possible because the Pintos loader
puts the initial thread’s stack at the top of a page, in the same position as any other
Pintos thread.

Before thread_init () runs, thread_current () will fail because the running thread’s
magic value is incorrect. Lots of functions call thread_current () directly or indi-
rectly, including lock_acquire () for locking a lock, so thread_init () is called early
in Pintos initialization.

void thread_start (void) [Function]
Called by main() to start the scheduler. Creates the idle thread, that is, the thread
that is scheduled when no other thread is ready. Then enables interrupts, which
as a side effect enables the scheduler because the scheduler runs on return from
the timer interrupt, using intr_yield_on_return() (see Section A.4.3 [External
Interrupt Handling], page 37).

void thread_tick (void) [Function]
Called by the timer interrupt at each timer tick. It keeps track of thread statistics
and triggers the scheduler when a time slice expires.

void thread_print_stats (void) [Function]
Called during Pintos shutdown to print thread statistics.

Appendix A: Reference Guide 27

tid_t thread_create (const char *name, int priority, thread_func [Function]
*func, void *aux)
Creates and starts a new thread named name with the given priority, returning the
new thread’s tid. The thread executes func, passing aux as the function’s single
argument.

thread_create() allocates a page for the thread’s struct thread and stack and
initializes its members, then it sets up a set of fake stack frames for it (see Section A.2.3
[Thread Switching], page 28). The thread is initialized in the blocked state, then
unblocked just before returning, which allows the new thread to be scheduled (see
[Thread States|, page 25).

void thread_func (void *aux) [Type]
This is the type of the function passed to thread_create(), whose aux argu-
ment is passed along as the function’s argument.

void thread_block (void) [Function]
Transitions the running thread from the running state to the blocked state (see
[Thread States|, page 25). The thread will not run again until thread_unblock() is
called on it, so you’d better have some way arranged for that to happen. Because
thread_block() is so low-level, you should prefer to use one of the synchronization
primitives instead (see Section A.3 [Synchronization|, page 29).

void thread_unblock (struct thread *thread) [Function]
Transitions thread, which must be in the blocked state, to the ready state, allowing
it to resume running (see [Thread States|, page 25). This is called when the event
that the thread is waiting for occurs, e.g. when the lock that the thread is waiting on
becomes available.

struct thread * thread_current (void) [Function]
Returns the running thread.

tid_t thread_tid (void) [Function]
Returns the running thread’s thread id. Equivalent to thread_current ()->tid.

const char * thread_name (void) [Function]
Returns the running thread’s name. Equivalent to thread_current ()->name.

void thread_exit (void) NO_RETURN [Function]
Causes the current thread to exit. Never returns, hence NO_RETURN (see Section B.3
[Function and Parameter Attributes], page 54).

void thread_yield (void) [Function]
Yields the CPU to the scheduler, which picks a new thread to run. The new thread
might be the current thread, so you can’t depend on this function to keep this thread
from running for any particular length of time.

void thread_foreach (thread_action_func *action, void *aux) [Function]
Iterates over all threads t and invokes action(t, aux) on each. action must refer to
a function that matches the signature given by thread_action_func():

Appendix A: Reference Guide 28

void thread_action_func (struct thread *thread, void [Type]
*aux)
Performs some action on a thread, given aux.

int thread_get_priority (void) [Function]

void thread_set_priority (int new_priority) [Function]
Stub to set and get thread priority. See (undefined) [Priority Scheduling], page (un-
defined).

int thread_get_nice (void) [Function]

void thread_set_nice (int new_nice) [Function]

int thread_get_recent_cpu (void) [Function]

int thread_get_load_avg (void) [Function]
Stubs for the advanced scheduler. See (undefined) [4.4BSD Scheduler|, page (unde-
fined).

A.2.3 Thread Switching

schedule() is responsible for switching threads. It is internal to ‘threads/thread.c’
and called only by the three public thread functions that need to switch threads:
thread_block(), thread_exit(), and thread_yield(). Before any of these functions
call schedule(), they disable interrupts (or ensure that they are already disabled) and
then change the running thread’s state to something other than running.

schedule() is short but tricky. It records the current thread in local variable cur,
determines the next thread to run as local variable next (by calling next_thread_to_
run()), and then calls switch_threads() to do the actual thread switch. The thread we
switched to was also running inside switch_threads(), as are all the threads not currently
running, so the new thread now returns out of switch_threads (), returning the previously
running thread.

switch_threads() is an assembly language routine in ‘threads/switch.S’. It saves
registers on the stack, saves the CPU’s current stack pointer in the current struct thread’s
stack member, restores the new thread’s stack into the CPU’s stack pointer, restores
registers from the stack, and returns.

The rest of the scheduler is implemented in thread_schedule_tail(). It marks the
new thread as running. If the thread we just switched from is in the dying state, then
it also frees the page that contained the dying thread’s struct thread and stack. These
couldn’t be freed prior to the thread switch because the switch needed to use it.

Running a thread for the first time is a special case. When thread_create() creates
a new thread, it goes through a fair amount of trouble to get it started properly. In
particular, the new thread hasn’t started running yet, so there’s no way for it to be running
inside switch_threads () as the scheduler expects. To solve the problem, thread_create ()
creates some fake stack frames in the new thread’s stack:

e The topmost fake stack frame is for switch_threads(), represented by struct
switch_threads_frame. The important part of this frame is its eip member, the
return address. We point eip to switch_entry(), indicating it to be the function
that called switch_entry().

Appendix A: Reference Guide 29

e The next fake stack frame is for switch_entry(), an assembly language routine in
‘threads/switch.S’ that adjusts the stack pointer,! calls thread_schedule_tail()
(this special case is why thread_schedule_tail() is separate from schedule()), and
returns. We fill in its stack frame so that it returns into kernel_thread(), a function
in ‘threads/thread.c’.

e The final stack frame is for kernel_thread(), which enables interrupts and calls the
thread’s function (the function passed to thread_create()). If the thread’s function
returns, it calls thread_exit () to terminate the thread.

A.3 Synchronization

If sharing of resources between threads is not handled in a careful, controlled fashion,
the result is usually a big mess. This is especially the case in operating system kernels,
where faulty sharing can crash the entire machine. Pintos provides several synchronization
primitives to help out.

A.3.1 Disabling Interrupts

The crudest way to do synchronization is to disable interrupts, that is, to temporarily
prevent the CPU from responding to interrupts. If interrupts are off, no other thread will
preempt the running thread, because thread preemption is driven by the timer interrupt.
If interrupts are on, as they normally are, then the running thread may be preempted by
another at any time, whether between two C statements or even within the execution of
one.

Incidentally, this means that Pintos is a “preemptible kernel,” that is, kernel threads can
be preempted at any time. Traditional Unix systems are “nonpreemptible,” that is, kernel
threads can only be preempted at points where they explicitly call into the scheduler. (User
programs can be preempted at any time in both models.) As you might imagine, preemptible
kernels require more explicit synchronization.

You should have little need to set the interrupt state directly. Most of the time you
should use the other synchronization primitives described in the following sections. The
main reason to disable interrupts is to synchronize kernel threads with external interrupt
handlers, which cannot sleep and thus cannot use most other forms of synchronization (see
Section A.4.3 [External Interrupt Handling], page 37).

Some external interrupts cannot be postponed, even by disabling interrupts. These inter-
rupts, called non-maskable interrupts (NMIs), are supposed to be used only in emergencies,
e.g. when the computer is on fire. Pintos does not handle non-maskable interrupts.

Types and functions for disabling and enabling interrupts are in ‘threads/interrupt.h’.

enum intr_level [Type]
One of INTR_OFF or INTR_ON, denoting that interrupts are disabled or enabled, re-
spectively.

enum intr_level intr_get_level (void) [Function]

Returns the current interrupt state.

1 This is because switch_threads () takes arguments on the stack and the 80x86 SVR4 calling convention
requires the caller, not the called function, to remove them when the call is complete. See [SysV-i386]
chapter 3 for details.

Appendix A: Reference Guide 30

enum intr_level intr_set_level (enum intr_level level) [Function]
Turns interrupts on or off according to level. Returns the previous interrupt state.

enum intr_level intr_enable (void) [Function]
Turns interrupts on. Returns the previous interrupt state.

enum intr_level intr_disable (void) [Function]
Turns interrupts off. Returns the previous interrupt state.

A.3.2 Semaphores

A semaphore is a nonnegative integer together with two operators that manipulate it atom-
ically, which are:

e “Down” or “P”: wait for the value to become positive, then decrement it.

e “Up” or “V”: increment the value (and wake up one waiting thread, if any).

A semaphore initialized to 0 may be used to wait for an event that will happen exactly
once. For example, suppose thread A starts another thread B and wants to wait for B to
signal that some activity is complete. A can create a semaphore initialized to 0, pass it to
B as it starts it, and then “down” the semaphore. When B finishes its activity, it “ups”
the semaphore. This works regardless of whether A “downs” the semaphore or B “ups” it
first.

A semaphore initialized to 1 is typically used for controlling access to a resource. Before
a block of code starts using the resource, it “downs” the semaphore, then after it is done
with the resource it “ups” the resource. In such a case a lock, described below, may be
more appropriate.

Semaphores can also be initialized to values larger than 1. These are rarely used.

Semaphores were invented by Edsger Dijkstra and first used in the THE operating system
([Dijkstral).

Pintos’ semaphore type and operations are declared in ‘threads/synch.h’.

struct semaphore [Type]
Represents a semaphore.

void sema_init (struct semaphore *sema, unsigned value) [Function]
Initializes sema as a new semaphore with the given initial value.

void sema_down (struct semaphore *sema) [Function]
Executes the “down” or “P” operation on sema, waiting for its value to become
positive and then decrementing it by one.

bool sema_try_down (struct semaphore *sema) [Function]
Tries to execute the “down” or “P” operation on sema, without waiting. Returns true
if sema was successfully decremented, or false if it was already zero and thus could
not be decremented without waiting. Calling this function in a tight loop wastes CPU
time, so use sema_down() or find a different approach instead.

Appendix A: Reference Guide 31

void sema_up (struct semaphore *sema) [Function]
Executes the “up” or “V” operation on sema, incrementing its value. If any threads
are waiting on sema, wakes one of them up.

Unlike most synchronization primitives, sema_up() may be called inside an external
interrupt handler (see Section A.4.3 [External Interrupt Handling], page 37).

Semaphores are internally built out of disabling interrupt (see Section A.3.1 [Disabling
Interrupts|, page 29) and thread blocking and unblocking (thread_block() and thread_
unblock()). Each semaphore maintains a list of waiting threads, using the linked list
implementation in ‘lib/kernel/list.c’.

A.3.3 Locks

A Jock is like a semaphore with an initial value of 1 (see Section A.3.2 [Semaphores],
page 30). A lock’s equivalent of “up” is called “release”, and the “down” operation is called
“acquire”.

Compared to a semaphore, a lock has one added restriction: only the thread that acquires
a lock, called the lock’s “owner”, is allowed to release it. If this restriction is a problem, it’s
a good sign that a semaphore should be used, instead of a lock.

Locks in Pintos are not “recursive,” that is, it is an error for the thread currently holding
a lock to try to acquire that lock.

Lock types and functions are declared in ‘threads/synch.h’.

struct lock [Type]
Represents a lock.

void lock_init (struct lock *lock) [Function]
Initializes lock as a new lock. The lock is not initially owned by any thread.

void lock_acquire (struct lock *1ock) [Function]
Acquires lock for the current thread, first waiting for any current owner to release it
if necessary.

bool lock_try_acquire (struct lock *lock) [Function]
Tries to acquire lock for use by the current thread, without waiting. Returns true if
successful, false if the lock is already owned. Calling this function in a tight loop is a
bad idea because it wastes CPU time, so use lock_acquire() instead.

void lock_release (struct lock *1lock) [Function]
Releases lock, which the current thread must own.

bool lock_held_by_current_thread (const struct lock *lock) [Function]
Returns true if the running thread owns lock, false otherwise. There is no function
to test whether an arbitrary thread owns a lock, because the answer could change
before the caller could act on it.

Appendix A: Reference Guide 32

A.3.4 Monitors

A monitor is a higher-level form of synchronization than a semaphore or a lock. A monitor
consists of data being synchronized, plus a lock, called the monitor lock, and one or more
condition variables. Before it accesses the protected data, a thread first acquires the monitor
lock. It is then said to be “in the monitor”. While in the monitor, the thread has control
over all the protected data, which it may freely examine or modify. When access to the
protected data is complete, it releases the monitor lock.

Condition variables allow code in the monitor to wait for a condition to become true.
Each condition variable is associated with an abstract condition, e.g. “some data has arrived
for processing” or “over 10 seconds has passed since the user’s last keystroke”. When code
in the monitor needs to wait for a condition to become true, it “waits” on the associated
condition variable, which releases the lock and waits for the condition to be signaled. If,
on the other hand, it has caused one of these conditions to become true, it “signals” the
condition to wake up one waiter, or “broadcasts” the condition to wake all of them.

The theoretical framework for monitors was laid out by C. A. R. Hoare ([Hoare]). Their
practical usage was later elaborated in a paper on the Mesa operating system ([Lampson]).

Condition variable types and functions are declared in ‘threads/synch.h’.

struct condition [Type]
Represents a condition variable.

void cond_init (struct condition *cond) [Function]
Initializes cond as a new condition variable.

void cond_wait (struct condition *cond, struct lock *1ock) [Function]
Atomically releases lock (the monitor lock) and waits for cond to be signaled by some
other piece of code. After cond is signaled, reacquires lock before returning. lock
must be held before calling this function.

Sending a signal and waking up from a wait are not an atomic operation. Thus,
typically cond_wait()’s caller must recheck the condition after the wait completes
and, if necessary, wait again. See the next section for an example.

void cond_signal (struct condition *cond, struct lock *1ock) [Function]
If any threads are waiting on cond (protected by monitor lock lock), then this function
wakes up one of them. If no threads are waiting, returns without performing any
action. lock must be held before calling this function.

void cond_broadcast (struct condition *cond, struct lock *1ock) [Function]
Wakes up all threads, if any, waiting on cond (protected by monitor lock lock). lock
must be held before calling this function.

A.3.4.1 Monitor Example

The classical example of a monitor is handling a buffer into which one or more “producer”
threads write characters and out of which one or more “consumer” threads read characters.
To implement this we need, besides the monitor lock, two condition variables which we will
call not_full and not_empty:

Appendix A: Reference Guide 33

char buf [BUF_SIZE]; /* Buffer. */

size_t n = 0; /* 0 <= n <= BUF_SIZE: # of characters in buffer. */
size_t head = 0; /* buf index of next char to write (mod BUF_SIZE). */
size_t tail = 0; /* buf index of next char to read (mod BUF_SIZE). */
struct lock lock; /* Monitor lock. */

struct condition not_empty; /* Signaled when the buffer is not empty. */
struct condition not_full; /* Signaled when the buffer is not full. */

.. .initialize the locks and condition variables. . .

void put (char ch) {
lock_acquire (&lock);

while (n == BUF_SIZE) /* Can’t add to buf as long as it’s full. */
cond_wait (¬_full, &lock);

buf [head++ % BUF_SIZE] = ch; /* Add ch to buf. */

n++;

cond_signal (¬_empty, &lock); /* buf can’t be empty anymore. */
lock_release (&lock);

char get (void) {
char ch;
lock_acquire (&lock);
while (n == 0) /* Can’t read buf as long as it’s empty. */
cond_wait (¬_empty, &lock);
ch = buf[tail++ % BUF_SIZE]; /* Get ch from buf. */
n--;
cond_signal (¬_full, &lock); /* buf can’t be full anymore. */
lock_release (&lock);
}

Note that BUF_SIZE must divide evenly into SIZE_MAX + 1 for the above code to be
completely correct. Otherwise, it will fail the first time head wraps around to 0. In practice,
BUF_SIZE would ordinarily be a power of 2.

A.3.5 Optimization Barriers

An optimization barrier is a special statement that prevents the compiler from making
assumptions about the state of memory across the barrier. The compiler will not reorder
reads or writes of variables across the barrier or assume that a variable’s value is unmod-
ified across the barrier, except for local variables whose address is never taken. In Pintos,
‘threads/synch.h’ defines the barrier () macro as an optimization barrier.

One reason to use an optimization barrier is when data can change asynchronously,
without the compiler’s knowledge, e.g. by another thread or an interrupt handler. The
too_many_loops () function in ‘devices/timer.c’ is an example. This function starts out
by busy-waiting in a loop until a timer tick occurs:

/* Wait for a timer tick. */
int64_t start = ticks;

Appendix A: Reference Guide 34

while (ticks == start)
barrier ();

Without an optimization barrier in the loop, the compiler could conclude that the loop
would never terminate, because start and ticks start out equal and the loop itself never
changes them. It could then “optimize” the function into an infinite loop, which would
definitely be undesirable.

Optimization barriers can be used to avoid other compiler optimizations. The busy_
wait () function, also in ‘devices/timer.c’, is an example. It contains this loop:

while (loops-- > 0)
barrier ();

The goal of this loop is to busy-wait by counting loops down from its original value to
0. Without the barrier, the compiler could delete the loop entirely, because it produces no
useful output and has no side effects. The barrier forces the compiler to pretend that the
loop body has an important effect.

Finally, optimization barriers can be used to force the ordering of memory reads or
writes. For example, suppose we add a “feature” that, whenever a timer interrupt occurs,
the character in global variable timer_put_char is printed on the console, but only if global
Boolean variable timer_do_put is true. The best way to set up ‘x’ to be printed is then to
use an optimization barrier, like this:

timer_put_char = ’x’;
barrier ();
timer_do_put = true;

Without the barrier, the code is buggy because the compiler is free to reorder operations
when it doesn’t see a reason to keep them in the same order. In this case, the compiler
doesn’t know that the order of assignments is important, so its optimizer is permitted to
exchange their order. There’s no telling whether it will actually do this, and it is possible
that passing the compiler different optimization flags or using a different version of the
compiler will produce different behavior.

Another solution is to disable interrupts around the assignments. This does not prevent
reordering, but it prevents the interrupt handler from intervening between the assignments.
It also has the extra runtime cost of disabling and re-enabling interrupts:

enum intr_level old_level = intr_disable ();
timer_put_char = ’x’;

timer_do_put = true;

intr_set_level (old_level);

A second solution is to mark the declarations of timer_put_char and timer_do_put as
‘volatile’. This keyword tells the compiler that the variables are externally observable and
restricts its latitude for optimization. However, the semantics of ‘volatile’ are not well-
defined, so it is not a good general solution. The base Pintos code does not use ‘volatile’
at all.

The following is not a solution, because locks neither prevent interrupts nor prevent the
compiler from reordering the code within the region where the lock is held:

lock_acquire (&timer_lock); /* INCORRECT CODE */
timer_put_char = ’x’;

Appendix A: Reference Guide 35

timer_do_put = true;
lock_release (&timer_lock);

The compiler treats invocation of any function defined externally, that is, in another
source file, as a limited form of optimization barrier. Specifically, the compiler assumes
that any externally defined function may access any statically or dynamically allocated
data and any local variable whose address is taken. This often means that explicit barriers
can be omitted. It is one reason that Pintos contains few explicit barriers.

A function defined in the same source file, or in a header included by the source file,
cannot be relied upon as a optimization barrier. This applies even to invocation of a function
before its definition, because the compiler may read and parse the entire source file before
performing optimization.

A.4 Interrupt Handling

An interrupt notifies the CPU of some event. Much of the work of an operating system
relates to interrupts in one way or another. For our purposes, we classify interrupts into
two broad categories:

e Internal interrupts, that is, interrupts caused directly by CPU instructions. System
calls, attempts at invalid memory access (page faults), and attempts to divide by zero
are some activities that cause internal interrupts. Because they are caused by CPU in-
structions, internal interrupts are synchronous or synchronized with CPU instructions.
intr_disable() does not disable internal interrupts.

e External interrupts, that is, interrupts originating outside the CPU. These interrupts
come from hardware devices such as the system timer, keyboard, serial ports, and
disks. External interrupts are asynchronous, meaning that their delivery is not syn-
chronized with instruction execution. Handling of external interrupts can be postponed
with intr_disable() and related functions (see Section A.3.1 [Disabling Interrupts],
page 29).

The CPU treats both classes of interrupts largely the same way, so Pintos has com-
mon infrastructure to handle both classes. The following section describes this common
infrastructure. The sections after that give the specifics of external and internal interrupts.

If you haven’t already read chapter 3, “Basic Execution Environment,” in [[A32-v1], it
is recommended that you do so now. You might also want to skim chapter 5, “Interrupt
and Exception Handling,” in [IA32-v3a].

A.4.1 Interrupt Infrastructure

When an interrupt occurs, the CPU saves its most essential state on a stack and jumps to
an interrupt handler routine. The 80x86 architecture supports 256 interrupts, numbered
0 through 255, each with an independent handler defined in an array called the interrupt
descriptor table or IDT.

In Pintos, intr_init() in ‘threads/interrupt.c’ sets up the IDT so that each entry
points to a unique entry point in ‘threads/intr-stubs.S’ named intrNN_stub(), where
NN is the interrupt number in hexadecimal. Because the CPU doesn’t give us any other
way to find out the interrupt number, this entry point pushes the interrupt number on the
stack. Then it jumps to intr_entry (), which pushes all the registers that the processor

Appendix A: Reference Guide 36

didn’t already push for us, and then calls intr_handler (), which brings us back into C in
‘threads/interrupt.c’.

The main job of intr_handler() is to call the function registered for handling the
particular interrupt. (If no function is registered, it dumps some information to the console
and panics.) It also does some extra processing for external interrupts (see Section A.4.3
[External Interrupt Handling], page 37).

When intr_handler () returns, the assembly code in ‘threads/intr-stubs.S’ restores
all the CPU registers saved earlier and directs the CPU to return from the interrupt.

The following types and functions are common to all interrupts.

void intr_handler_func (struct intr_frame *frame) [Type]
This is how an interrupt handler function must be declared. Its frame argument (see
below) allows it to determine the cause of the interrupt and the state of the thread
that was interrupted.

struct intr_frame [Type]
The stack frame of an interrupt handler, as saved by the CPU, the interrupt stubs,
and intr_entry(). Its most interesting members are described below.

[Member of struct intr_frame
[Member of struct intr_frame
uint32_t ebp [Member of struct intr_frame
uint32_t esp_dummy [Member of struct intr_frame
uint32_t ebx [Member of struct intr_frame

[

[

[

[

uint32_t edi]
]
]
]
]
uint32_t edx Member of struct intr_frame]
]
]
]
]

uint32_t esi

uint32_t ecx Member of struct intr_frame
uint32_t eax Member of struct intr_frame
uintl6_t es Member of struct intr_frame
uint1l6_t ds [Member of struct intr_frame
Register values in the interrupted thread, pushed by intr_entry (). The esp_dummy
value isn’t actually used (refer to the description of PUSHA in [IA32-v2b] for details).

uint32_t vec_no [Member of struct intr_frame|
The interrupt vector number, ranging from 0 to 255.

uint32_t error_code [Member of struct intr_frame]
The “error code” pushed on the stack by the CPU for some internal interrupts.

void (*eip) (void) [Member of struct intr_frame]
The address of the next instruction to be executed by the interrupted thread.

void * esp [Member of struct intr_frame]
The interrupted thread’s stack pointer.

const char * intr_name (uint8-t vec) [Function]
Returns the name of the interrupt numbered vec, or "unknown" if the interrupt has
no registered name.

Appendix A: Reference Guide 37

A.4.2 Internal Interrupt Handling

Internal interrupts are caused directly by CPU instructions executed by the running kernel
thread or user process (from project 2 onward). An internal interrupt is therefore said to
arise in a “process context.”

In an internal interrupt’s handler, it can make sense to examine the struct intr_frame
passed to the interrupt handler, or even to modify it. When the interrupt returns, modifi-
cations in struct intr_frame become changes to the calling thread or process’s state. For
example, the Pintos system call handler returns a value to the user program by modifying
the saved EAX register (see (undefined) [System Call Details|, page (undefined)).

There are no special restrictions on what an internal interrupt handler can or can’t do.
Generally they should run with interrupts enabled, just like other code, and so they can be
preempted by other kernel threads. Thus, they do need to synchronize with other threads
on shared data and other resources (see Section A.3 [Synchronization], page 29).

Internal interrupt handlers can be invoked recursively. For example, the system call
handler might cause a page fault while attempting to read user memory. Deep recursion
would risk overflowing the limited kernel stack (see Section A.2.1 [struct thread], page 24),
but should be unnecessary.

void intr_register_int (uint8-t vec, int dpl, enum intr_level level, [Function]
intr_handler_func *handler, const char *name)
Registers handler to be called when internal interrupt numbered vec is triggered.
Names the interrupt name for debugging purposes.

If level is INTR_ON, external interrupts will be processed normally during the interrupt
handler’s execution, which is normally desirable. Specifying INTR_OFF will cause the
CPU to disable external interrupts when it invokes the interrupt handler. The effect
is slightly different from calling intr_disable() inside the handler, because that
leaves a window of one or more CPU instructions in which external interrupts are
still enabled. This is important for the page fault handler; refer to the comments in
‘userprog/exception.c’ for details.

dpl determines how the interrupt can be invoked. If dpl is 0, then the interrupt can
be invoked only by kernel threads. Otherwise dpl should be 3, which allows user
processes to invoke the interrupt with an explicit INT instruction. The value of dpl
doesn’t affect user processes’ ability to invoke the interrupt indirectly, e.g. an invalid
memory reference will cause a page fault regardless of dpl.

A.4.3 External Interrupt Handling

External interrupts are caused by events outside the CPU. They are asynchronous, so they
can be invoked at any time that interrupts have not been disabled. We say that an external
interrupt runs in an “interrupt context.”

In an external interrupt, the struct intr_frame passed to the handler is not very
meaningful. It describes the state of the thread or process that was interrupted, but there
is no way to predict which one that is. It is possible, although rarely useful, to examine it,
but modifying it is a recipe for disaster.

Only one external interrupt may be processed at a time. Neither internal nor external
interrupt may nest within an external interrupt handler. Thus, an external interrupt’s
handler must run with interrupts disabled (see Section A.3.1 [Disabling Interrupts|, page 29).

Appendix A: Reference Guide 38

An external interrupt handler must not sleep or yield, which rules out calling lock_
acquire(), thread_yield(), and many other functions. Sleeping in interrupt context
would effectively put the interrupted thread to sleep, too, until the interrupt handler was
again scheduled and returned. This would be unfair to the unlucky thread, and it would
deadlock if the handler were waiting for the sleeping thread to, e.g., release a lock.

An external interrupt handler effectively monopolizes the machine and delays all other
activities. Therefore, external interrupt handlers should complete as quickly as they can.
Anything that require much CPU time should instead run in a kernel thread, possibly one
that the interrupt triggers using a synchronization primitive.

External interrupts are controlled by a pair of devices outside the CPU called pro-
grammable interrupt controllers, PICs for short. When intr_init() sets up the CPU’s
IDT, it also initializes the PICs for interrupt handling. The PICs also must be “acknowl-
edged” at the end of processing for each external interrupt. intr_handler () takes care of
that by calling pic_end_of_interrupt (), which properly signals the PICs.

The following functions relate to external interrupts.

void intr_register_ext (uint8-t vec, intr_handler_func *handler, [Function]
const char *name)
Registers handler to be called when external interrupt numbered vec is triggered.
Names the interrupt name for debugging purposes. The handler will run with inter-
rupts disabled.

bool intr_context (void) [Function]
Returns true if we are running in an interrupt context, otherwise false. Mainly used
in functions that might sleep or that otherwise should not be called from interrupt
context, in this form:

ASSERT (!lintr_context ());

void intr_yield_on_return (void) [Function]
When called in an interrupt context, causes thread_yield() to be called just before
the interrupt returns. Used in the timer interrupt handler when a thread’s time slice
expires, to cause a new thread to be scheduled.

A.5 Memory Allocation

Pintos contains two memory allocators, one that allocates memory in units of a page, and
one that can allocate blocks of any size.

A.5.1 Page Allocator

The page allocator declared in ‘threads/palloc.h’ allocates memory in units of a page. It
is most often used to allocate memory one page at a time, but it can also allocate multiple
contiguous pages at once.

The page allocator divides the memory it allocates into two pools, called the kernel
and user pools. By default, each pool gets half of system memory above 1 MB, but the
division can be changed with the ‘-ul’ kernel command line option (see (undefined) [Why
PAL_USER?], page (undefined)). An allocation request draws from one pool or the other.
If one pool becomes empty, the other may still have free pages. The user pool should be

Appendix A: Reference Guide 39

used for allocating memory for user processes and the kernel pool for all other allocations.
This will only become important starting with project 3. Until then, all allocations should
be made from the kernel pool.

Each pool’s usage is tracked with a bitmap, one bit per page in the pool. A request to
allocate n pages scans the bitmap for n consecutive bits set to false, indicating that those
pages are free, and then sets those bits to true to mark them as used. This is a “first fit”
allocation strategy (see [Wilson], page 69).

The page allocator is subject to fragmentation. That is, it may not be possible to
allocate n contiguous pages even though n or more pages are free, because the free pages
are separated by used pages. In fact, in pathological cases it may be impossible to allocate
2 contiguous pages even though half of the pool’s pages are free. Single-page requests can’t
fail due to fragmentation, so requests for multiple contiguous pages should be limited as
much as possible.

Pages may not be allocated from interrupt context, but they may be freed.

When a page is freed, all of its bytes are cleared to Oxcc, as a debugging aid (see
Section B.8 [Debugging Tips|, page 64).

Page allocator types and functions are described below.

void * palloc_get_page (enum palloc_flags flags) [Function]
void * palloc_get_multiple (enum palloc_flags flags, size_t [Function]
page_cnt)

Obtains and returns one page, or page_cnt contiguous pages, respectively. Returns a
null pointer if the pages cannot be allocated.

The flags argument may be any combination of the following flags:

PAL_ASSERT [Page Allocator Flag]
If the pages cannot be allocated, panic the kernel. This is only appropriate
during kernel initialization. User processes should never be permitted to panic
the kernel.

PAL_ZERO [Page Allocator Flag]
Zero all the bytes in the allocated pages before returning them. If not set, the
contents of newly allocated pages are unpredictable.

PAL_USER [Page Allocator Flag]
Obtain the pages from the user pool. If not set, pages are allocated from the
kernel pool.

void palloc_free_page (void *page) [Function]

void palloc_free_multiple (void *pages, size_t page_cnt) [Function]
Frees one page, or page_cnt contiguous pages, respectively, starting at pages. All
of the pages must have been obtained using palloc_get_page() or palloc_get_
multiple().

Appendix A: Reference Guide 40

A.5.2 Block Allocator

The block allocator, declared in ‘threads/malloc.h’, can allocate blocks of any size. It is
layered on top of the page allocator described in the previous section. Blocks returned by
the block allocator are obtained from the kernel pool.

The block allocator uses two different strategies for allocating memory. The first strategy
applies to blocks that are 1 kB or smaller (one-fourth of the page size). These allocations
are rounded up to the nearest power of 2, or 16 bytes, whichever is larger. Then they are
grouped into a page used only for allocations of that size.

The second strategy applies to blocks larger than 1 kB. These allocations (plus a small
amount of overhead) are rounded up to the nearest page in size, and then the block allocator
requests that number of contiguous pages from the page allocator.

In either case, the difference between the allocation requested size and the actual block
size is wasted. A real operating system would carefully tune its allocator to minimize this
waste, but this is unimportant in an instructional system like Pintos.

As long as a page can be obtained from the page allocator, small allocations always
succeed. Most small allocations do not require a new page from the page allocator at all,
because they are satisfied using part of a page already allocated. However, large allocations
always require calling into the page allocator, and any allocation that needs more than one
contiguous page can fail due to fragmentation, as already discussed in the previous section.
Thus, you should minimize the number of large allocations in your code, especially those
over approximately 4 kB each.

When a block is freed, all of its bytes are cleared to Oxcc, as a debugging aid (see
Section B.8 [Debugging Tips|, page 64).
The block allocator may not be called from interrupt context.

The block allocator functions are described below. Their interfaces are the same as the
standard C library functions of the same names.

void * malloc (size_t size) [Function]
Obtains and returns a new block, from the kernel pool, at least size bytes long.
Returns a null pointer if size is zero or if memory is not available.

void * calloc (size_t a, size_-t b) [Function]
Obtains a returns a new block, from the kernel pool, at least a * b bytes long. The
block’s contents will be cleared to zeros. Returns a null pointer if a or b is zero or if
insufficient memory is available.

void * realloc (void *block, size_t new_size) [Function]
Attempts to resize block to new_size bytes, possibly moving it in the process. If
successful, returns the new block, in which case the old block must no longer be
accessed. On failure, returns a null pointer, and the old block remains valid.

A call with block null is equivalent to malloc (). A call with new_size zero is equiv-
alent to free().

void free (void *block) [Function]
Frees block, which must have been previously returned by malloc(), calloc(), or
realloc() (and not yet freed).

Appendix A: Reference Guide 41

A.6 Virtual Addresses

A 32-bit virtual address can be divided into a 20-bit page number and a 12-bit page offset
(or just offset), like this:
31 12 11 0
o o +

| Page Number | Offset |
o Fomm +

Virtual Address

Header ‘threads/vaddr.h’ defines these functions and macros for working with virtual
addresses:

PGSHIFT [Macro]

PGBITS [Macro]
The bit index (0) and number of bits (12) of the offset part of a virtual address,
respectively.

PGMASK [Macro]

A bit mask with the bits in the page offset set to 1, the rest set to 0 (0x£fff).

PGSIZE [Macro]
The page size in bytes (4,096).

unsigned pg_ofs (const void *va) [Function]
Extracts and returns the page offset in virtual address va.

uintptr_t pg_no (const void *va) [Function]
Extracts and returns the page number in virtual address va.

void * pg_round_down (const void *va) [Function]
Returns the start of the virtual page that va points within, that is, va with the page
offset set to 0.

void * pg_round_up (const void *va) [Function]
Returns va rounded up to the nearest page boundary.

Virtual memory in Pintos is divided into two regions: user virtual memory and kernel vir-
tual memory (see (undefined) [Virtual Memory Layout], page (undefined)). The boundary
between them is PHYS_BASE:

PHYS_BASE [Macro]
Base address of kernel virtual memory. It defaults to 0xc0000000 (3 GB), but it may
be changed to any multiple of 0x10000000 from 0x80000000 to 0xf0000000.

User virtual memory ranges from virtual address 0 up to PHYS_BASE. Kernel virtual
memory occupies the rest of the virtual address space, from PHYS_BASE up to 4 GB.

bool is_user_vaddr (const void *va) [Function]
bool is_kernel_vaddr (const void *va) [Function]
Returns true if va is a user or kernel virtual address, respectively, false otherwise.

Appendix A: Reference Guide 42

The 80x86 doesn’t provide any way to directly access memory given a physical address.
This ability is often necessary in an operating system kernel, so Pintos works around it by
mapping kernel virtual memory one-to-one to physical memory. That is, virtual address
PHYS_BASE accesses physical address 0, virtual address PHYS_BASE + 0x1234 accesses phys-
ical address 0x1234, and so on up to the size of the machine’s physical memory. Thus,
adding PHYS_BASE to a physical address obtains a kernel virtual address that accesses that
address; conversely, subtracting PHYS_BASE from a kernel virtual address obtains the cor-
responding physical address. Header ‘threads/vaddr.h’ provides a pair of functions to do
these translations:

void * ptov (uintptr_t pa) [Function]
Returns the kernel virtual address corresponding to physical address pa, which should
be between 0 and the number of bytes of physical memory.

uintptr_t vtop (void *va) [Function]
Returns the physical address corresponding to va, which must be a kernel virtual
address.

A.7 Page Table

The code in ‘pagedir.c’ is an abstract interface to the 80x86 hardware page table, also
called a “page directory” by Intel processor documentation. The page table interface uses a
uint32_t * to represent a page table because this is convenient for accessing their internal
structure.

The sections below describe the page table interface and internals.

A.7.1 Creation, Destruction, and Activation

These functions create, destroy, and activate page tables. The base Pintos code already
calls these functions where necessary, so it should not be necessary to call them yourself.

uint32_t * pagedir_create (void) [Function]
Creates and returns a new page table. The new page table contains Pintos’s normal
kernel virtual page mappings, but no user virtual mappings.

Returns a null pointer if memory cannot be obtained.
void pagedir_destroy (uint32_t *pd) [Function]

Frees all of the resources held by pd, including the page table itself and the frames
that it maps.

void pagedir_activate (uint32_t *pd) [Function]
Activates pd. The active page table is the one used by the CPU to translate memory
references.

A.7.2 Inspection and Updates

These functions examine or update the mappings from pages to frames encapsulated by a
page table. They work on both active and inactive page tables (that is, those for running
and suspended processes), flushing the TLB as necessary.

Appendix A: Reference Guide 43

bool pagedir_set_page (uint32_t *pd, void *upage, void *kpage, bool [Function]
writable)
Adds to pd a mapping from user page upage to the frame identified by kernel virtual
address kpage. If writable is true, the page is mapped read/write; otherwise, it is
mapped read-only.

User page upage must not already be mapped in pd.

Kernel page kpage should be a kernel virtual address obtained from the user pool
with palloc_get_page(PAL_USER) (see (undefined) [Why PAL_USER?], page (un-
defined)).

Returns true if successful, false on failure. Failure will occur if additional memory
required for the page table cannot be obtained.

void * pagedir_get_page (uint32_t *pd, const void *uaddr) [Function]
Looks up the frame mapped to uaddr in pd. Returns the kernel virtual address for
that frame, if uaddr is mapped, or a null pointer if it is not.

void pagedir_clear_page (uint32_t *pd, void *page) [Function]
Marks page “not present” in pd. Later accesses to the page will fault.

Other bits in the page table for page are preserved, permitting the accessed and dirty
bits (see the next section) to be checked.

This function has no effect if page is not mapped.

A.7.3 Accessed and Dirty Bits

80x86 hardware provides some assistance for implementing page replacement algorithms,
through a pair of bits in the page table entry (PTE) for each page. On any read or write to
a page, the CPU sets the accessed bit to 1 in the page’s PTE, and on any write, the CPU
sets the dirty bit to 1. The CPU never resets these bits to 0, but the OS may do so.

Proper interpretation of these bits requires understanding of aliases, that is, two (or
more) pages that refer to the same frame. When an aliased frame is accessed, the accessed
and dirty bits are updated in only one page table entry (the one for the page used for
access). The accessed and dirty bits for the other aliases are not updated.

See (undefined) [Accessed and Dirty Bits|, page (undefined), on applying these bits in
implementing page replacement algorithms.

bool pagedir_is_dirty (uint32_t *pd, const void *page) [Function]

bool pagedir_is_accessed (uint32_t *pd, const void *page) [Function]
Returns true if page directory pd contains a page table entry for page that is marked
dirty (or accessed). Otherwise, returns false.

void pagedir_set_dirty (uint32_-t *pd, const void *page, bool value) [Function]
void pagedir_set_accessed (uint32-t *pd, const void *page, bool [Function]
value)
If page directory pd has a page table entry for page, then its dirty (or accessed) bit
is set to value.

Appendix A: Reference Guide 44

A.7.4 Page Table Details

The functions provided with Pintos are sufficient to implement the projects. However, you
may still find it worthwhile to understand the hardware page table format, so we’ll go into
a little detail in this section.

A.7.4.1 Structure

The top-level paging data structure is a page called the “page directory” (PD) arranged
as an array of 1,024 32-bit page directory entries (PDEs), each of which represents 4 MB
of virtual memory. Each PDE may point to the physical address of another page called a
“page table” (PT) arranged, similarly, as an array of 1,024 32-bit page table entries (PTEs),
each of which translates a single 4 kB virtual page to a physical page.

Translation of a virtual address into a physical address follows the three-step process
illustrated in the diagram below:?

1. The most-significant 10 bits of the virtual address (bits 22...31) index the page direc-
tory. If the PDE is marked “present,” the physical address of a page table is read from
the PDE thus obtained. If the PDE is marked “not present” then a page fault occurs.

2. The next 10 bits of the virtual address (bits 12. ..21) index the page table. If the PTE
is marked “present,” the physical address of a data page is read from the PTE thus
obtained. If the PTE is marked “not present” then a page fault occurs.

3. The least-significant 12 bits of the virtual address (bits 0...11) are added to the data
page’s physical base address, yielding the final physical address.

2 Actually, virtual to physical translation on the 80x86 architecture occurs via an intermediate “linear
address,” but Pintos (and most modern 80x86 OSes) set up the CPU so that linear and virtual addresses
are one and the same. Thus, you can effectively ignore this CPU feature.

Appendix A: Reference Guide 45

31 22 21 12 11 0
e e o +
| Page Directory Index | Page Table Index | Page Offset I
o o o +
| | |
_______ / E—4 —/
/ / /
/ Page Directory / Page Table / Data Page

/e /e /e

1,023 ____________ | 11,023 ____________ | | e |

1,022 ____________ | 11,022] ____________ | | | |

(1,021 ____________ [11,0240 ____________ | NN |

11,0200 ____________ | 11,0200 ____________ | /A I |

| | I | | | |

| | I \N____\I I_ | |

| | | /1 I\ | |

N\ (. | (I | |

/1 I\ | | | |

| [| (I | |

| [| (I | |

e (. e (I e |

al__ [B (I e |

3| [- | | |

2| lr 2l (I | |

1 [S I (I e |

Ol o I \N__\O|____________ I NN |

/ /

Pintos provides some macros and functions that are useful for working with raw page
tables:

PTSHIFT [Macro]

PTBITS [Macro]
The starting bit index (12) and number of bits (10), respectively, in a page table
index.

PTMASK [Macro]
A bit mask with the bits in the page table index set to 1 and the rest set to 0
(0x3££000).

PTSPAN [Macro]

The number of bytes of virtual address space that a single page table page covers

(4,194,304 bytes, or 4 MB).

PDSHIFT [Macro]

PDBITS [Macro]
The starting bit index (22) and number of bits (10), respectively, in a page directory
index.

Appendix A: Reference Guide 46

PDMASK [Macro]
A bit mask with the bits in the page directory index set to 1 and other bits set to 0
(0x££c00000).

uintptr_t pd_no (const void *va) [Function]

uintptr_t pt_no (const void *va) [Function]

Returns the page directory index or page table index, respectively, for virtual address
va. These functions are defined in ‘threads/pte.h’.

unsigned pg_ofs (const void *va) [Function]
Returns the page offset for virtual address va. This function is defined in
‘threads/vaddr.h’.

A.7.4.2 Page Table Entry Format

You do not need to understand the PTE format to do the Pintos projects, unless you wish
to incorporate the page table into your supplemental page table (see (undefined) [Managing
the Supplemental Page Table], page (undefined)).
The actual format of a page table entry is summarized below. For complete information,
refer to section 3.7, “Page Translation Using 32-Bit Physical Addressing,” in [IA32-v3a).
31 12 11 9 6 5 210

o e e S s

| Physical Address | AVL| [DIA] |UIWIP|

e o m b —

Some more information on each bit is given below. The names are ‘threads/pte.h’
macros that represent the bits” values:

PTE_P [Macro]
Bit 0, the “present” bit. When this bit is 1, the other bits are interpreted as described
below. When this bit is 0, any attempt to access the page will page fault. The
remaining bits are then not used by the CPU and may be used by the OS for any
purpose.

PTE_W [Macro]
Bit 1, the “read/write” bit. When it is 1, the page is writable. When it is 0, write
attempts will page fault.

PTE_U [Macro]
Bit 2, the “user/supervisor” bit. When it is 1, user processes may access the page.
When it is 0, only the kernel may access the page (user accesses will page fault).
Pintos clears this bit in PTEs for kernel virtual memory, to prevent user processes
from accessing them.

PTE_A [Macro]
Bit 5, the “accessed” bit. See Section A.7.3 [Page Table Accessed and Dirty Bits],
page 43.

PTE_D [Macro]

Bit 6, the “dirty” bit. See Section A.7.3 [Page Table Accessed and Dirty Bits], page 43.

Appendix A: Reference Guide 47

PTE_AVL [Macro]
Bits 9. . .11, available for operating system use. Pintos, as provided, does not use
them and sets them to 0.

PTE_ADDR [Macro]
Bits 12.. .31, the top 20 bits of the physical address of a frame. The low 12 bits of
the frame’s address are always 0.

Other bits are either reserved or uninteresting in a Pintos context and should be set to 0.
Header ‘threads/pte.h’ defines three functions for working with page table entries:

uint32_t pte_create_kernel (uint32_-t *page, bool writable) [Function]
Returns a page table entry that points to page, which should be a kernel virtual
address. The PTE’s present bit will be set. It will be marked for kernel-only access.
If writable is true, the PTE will also be marked read/write; otherwise, it will be
read-only.

uint32_t pte_create_user (uint32_t *page, bool writable) [Function]
Returns a page table entry that points to page, which should be the kernel virtual
address of a frame in the user pool (see (undefined) [Why PAL_USER?], page (unde-
fined)). The PTE’s present bit will be set and it will be marked to allow user-mode
access. If writable is true, the PTE will also be marked read/write; otherwise, it will
be read-only.

void * pte_get_page (uint32_-t pte) [Function]
Returns the kernel virtual address for the frame that pte points to. The pte may be
present or not-present; if it is not-present then the pointer returned is only meaningful
if the address bits in the PTE actually represent a physical address.

A.7.4.3 Page Directory Entry Format

Page directory entries have the same format as PTEs, except that the physical address points
to a page table page instead of a frame. Header ‘threads/pte.h’ defines two functions for
working with page directory entries:

uint32_t pde_create (uint32_t *pt) [Function]
Returns a page directory that points to page, which should be the kernel virtual
address of a page table page. The PDE’s present bit will be set, it will be marked to
allow user-mode access, and it will be marked read/write.

uint32_t * pde_get_pt (uint32_t pde) [Function]
Returns the kernel virtual address for the page table page that pde, which must be
marked present, points to.

A.8 Hash Table

Pintos provides a hash table data structure in ‘lib/kernel/hash.c’. To use it you will
need to include its header file, ‘1ib/kernel/hash.h’, with #include <hash.h>. No code
provided with Pintos uses the hash table, which means that you are free to use it as is,
modify its implementation for your own purposes, or ignore it, as you wish.

Most implementations of the virtual memory project use a hash table to translate pages
to frames. You may find other uses for hash tables as well.

Appendix A: Reference Guide 48

A.8.1 Data Types
A hash table is represented by struct hash.

struct hash [Type]
Represents an entire hash table. The actual members of struct hash are “opaque.”
That is, code that uses a hash table should not access struct hash members directly,
nor should it need to. Instead, use hash table functions and macros.

The hash table operates on elements of type struct hash_elem.

struct hash_elem [Type]
Embed a struct hash_elem member in the structure you want to include in a hash
table. Like struct hash, struct hash_elem is opaque. All functions for operating
on hash table elements actually take and return pointers to struct hash_elem, not
pointers to your hash table’s real element type.

You will often need to obtain a struct hash_elem given a real element of the hash table,
and vice versa. Given a real element of the hash table, you may use the ‘&’ operator to
obtain a pointer to its struct hash_elem. Use the hash_entry() macro to go the other
direction.

type * hash_entry (struct hash_elem *elem, type, member) [Macro]
Returns a pointer to the structure that elem, a pointer to a struct hash_elem, is
embedded within. You must provide type, the name of the structure that elem is
inside, and member, the name of the member in type that elem points to.
For example, suppose h is a struct hash_elem * variable that points to a struct
thread member (of type struct hash_elem) named h_elem. Then, hash_entry (h,
struct thread, h_elem) yields the address of the struct thread that h points
within.

See Section A.8.5 [Hash Table Example], page 52, for an example.

Each hash table element must contain a key, that is, data that identifies and distinguishes
elements, which must be unique among elements in the hash table. (Elements may also
contain non-key data that need not be unique.) While an element is in a hash table, its key
data must not be changed. Instead, if need be, remove the element from the hash table,
modify its key, then reinsert the element.

For each hash table, you must write two functions that act on keys: a hash function and
a comparison function. These functions must match the following prototypes:

unsigned hash_hash_func (const struct hash_elem *element, [Type]
void *aux)
Returns a hash of element’s data, as a value anywhere in the range of unsigned int.
The hash of an element should be a pseudo-random function of the element’s key. It
must not depend on non-key data in the element or on any non-constant data other
than the key. Pintos provides the following functions as a suitable basis for hash
functions.

unsigned hash_bytes (const void *buf, size_t *size) [Function]
Returns a hash of the size bytes starting at buf. The implementation is the
general-purpose Fowler-Noll-Vo hash for 32-bit words.

http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash

Appendix A: Reference Guide 49

unsigned hash_string (const char *s) [Function]
Returns a hash of null-terminated string s.

unsigned hash_int (int 1) [Function]
Returns a hash of integer i.

If your key is a single piece of data of an appropriate type, it is sensible for your hash
function to directly return the output of one of these functions. For multiple pieces
of data, you may wish to combine the output of more than one call to them using,
e.g., the ‘7 (exclusive or) operator. Finally, you may entirely ignore these functions
and write your own hash function from scratch, but remember that your goal is to
build an operating system kernel, not to design a hash function.

See Section A.8.6 [Hash Auxiliary Datal], page 53, for an explanation of aux.

bool hash_less_func (const struct hash_elem *a, const struct [Type]
hash_elem *b, void *aux)
Compares the keys stored in elements a and b. Returns true if a is less than b, false
if a is greater than or equal to b.

If two elements compare equal, then they must hash to equal values.

See Section A.8.6 [Hash Auxiliary Datal, page 53, for an explanation of aux.

See Section A.8.5 [Hash Table Example|, page 52, for hash and comparison function
examples.

A few functions accept a pointer to a third kind of function as an argument:

void hash_action_func (struct hash_elem *element, void *aux) [Type]
Performs some kind of action, chosen by the caller, on element.

See Section A.8.6 [Hash Auxiliary Datal], page 53, for an explanation of aux.
A.8.2 Basic Functions

These functions create, destroy, and inspect hash tables.

bool hash_init (struct hash *hash, hash_hash_func *hash_func, [Function]
hash_less_func *less_func, void *aux)
Initializes hash as a hash table with hash_func as hash function, less_func as compar-
ison function, and aux as auxiliary data. Returns true if successful, false on failure.
hash_init () calls malloc() and fails if memory cannot be allocated.

See Section A.8.6 [Hash Auxiliary Datal, page 53, for an explanation of aux, which is
most often a null pointer.

void hash_clear (struct hash *hash, hash_action_func *action) [Function]
Removes all the elements from hash, which must have been previously initialized with
hash_init().

If action is non-null, then it is called once for each element in the hash table, which
gives the caller an opportunity to deallocate any memory or other resources used
by the element. For example, if the hash table elements are dynamically allocated
using malloc(), then action could free() the element. This is safe because hash_
clear () will not access the memory in a given hash element after calling action on

Appendix A: Reference Guide 50

it. However, action must not call any function that may modify the hash table, such
as hash_insert() or hash_delete().

void hash_destroy (struct hash *hash, hash_action_func *action) [Function]
If action is non-null, calls it for each element in the hash, with the same semantics as
a call to hash_clear (). Then, frees the memory held by hash. Afterward, hash must
not be passed to any hash table function, absent an intervening call to hash_init ().

size_t hash_size (struct hash *hash) [Function]
Returns the number of elements currently stored in hash.

bool hash_empty (struct hash *hash) [Function]
Returns true if hash currently contains no elements, false if hash contains at least one
element.

A.8.3 Search Functions

Each of these functions searches a hash table for an element that compares equal to one
provided. Based on the success of the search, they perform some action, such as inserting
a new element into the hash table, or simply return the result of the search.

struct hash_elem * hash_insert (struct hash *hash, struct [Function]
hash_elem *element)
Searches hash for an element equal to element. If none is found, inserts element into
hash and returns a null pointer. If the table already contains an element equal to
element, it is returned without modifying hash.

struct hash_elem * hash_replace (struct hash *hash, struct [Function]
hash_elem *element)
Inserts element into hash. Any element equal to element already in hash is removed.
Returns the element removed, or a null pointer if hash did not contain an element
equal to element.

The caller is responsible for deallocating any resources associated with the returned
element, as appropriate. For example, if the hash table elements are dynamically
allocated using malloc(), then the caller must free() the element after it is no
longer needed.

The element passed to the following functions is only used for hashing and comparison
purposes. It is never actually inserted into the hash table. Thus, only key data in the
element needs to be initialized, and other data in the element will not be used. It often
makes sense to declare an instance of the element type as a local variable, initialize the
key data, and then pass the address of its struct hash_elem to hash_find() or hash_
delete(). See Section A.8.5 [Hash Table Example], page 52, for an example. (Large
structures should not be allocated as local variables. See Section A.2.1 [struct thread],
page 24, for more information.)

struct hash_elem * hash_find (struct hash *hash, struct hash_elem [Function]
*element)
Searches hash for an element equal to element. Returns the element found, if any, or
a null pointer otherwise.

Appendix A: Reference Guide 51

struct hash_elem * hash_delete (struct hash *hash, struct [Function]
hash_elem *element)
Searches hash for an element equal to element. If one is found, it is removed from
hash and returned. Otherwise, a null pointer is returned and hash is unchanged.

The caller is responsible for deallocating any resources associated with the returned
element, as appropriate. For example, if the hash table elements are dynamically
allocated using malloc(), then the caller must free() the element after it is no
longer needed.

A.8.4 Tteration Functions

These functions allow iterating through the elements in a hash table. Two interfaces are
supplied. The first requires writing and supplying a hash_action_func to act on each element
(see Section A.8.1 [Hash Data Types], page 48).

void hash_apply (struct hash *hash, hash_action_func *action) [Function]
Calls action once for each element in hash, in arbitrary order. action must not call any
function that may modify the hash table, such as hash_insert() or hash_delete().
action must not modify key data in elements, although it may modify any other data.

The second interface is based on an “iterator” data type. Idiomatically, iterators are
used as follows:

struct hash_iterator i;

hash_first (&i, h);
while (hash_next (&i))
{
struct foo *f = hash_entry (hash_cur (&i), struct foo, elem);
.. .do something with f. ..
}

struct hash_iterator [Type]
Represents a position within a hash table. Calling any function that may modify a
hash table, such as hash_insert () or hash_delete (), invalidates all iterators within
that hash table.

Like struct hash and struct hash_elem, struct hash_elem is opaque.

void hash_first (struct hash_iterator *iterator, struct hash *hash) [Function]
Initializes iterator to just before the first element in hash.

struct hash_elem * hash_next (struct hash_iterator *iterator) [Function]
Advances iterator to the next element in hash, and returns that element. Returns
a null pointer if no elements remain. After hash_next () returns null for iterator,
calling it again yields undefined behavior.

struct hash_elem * hash_cur (struct hash_iterator *iterator) [Function]
Returns the value most recently returned by hash_next() for iterator. Yields un-
defined behavior after hash_first() has been called on iterator but before hash_
next () has been called for the first time.

Appendix A: Reference Guide 52

A.8.5 Hash Table Example

Suppose you have a structure, called struct page, that you want to put into a hash table.
First, define struct page to include a struct hash_elem member:

struct page

{
struct hash_elem hash_elem; /* Hash table element. */
void *addr; /* Virtual address. */
/* ...other members... */

};

We write a hash function and a comparison function using addr as the key. A pointer
can be hashed based on its bytes, and the ‘<’ operator works fine for comparing pointers:

/* Returns a hash value for page p. */

unsigned

page_hash (const struct hash_elem *p_, void *aux UNUSED)

{
const struct page *p = hash_entry (p_, struct page, hash_elem);
return hash_bytes (&p->addr, sizeof p->addr);

}

/* Returns true if page a precedes page b. */

bool

page_less (const struct hash_elem *a_, const struct hash_elem *b_,
void *aux UNUSED)

{
const struct page *a = hash_entry (a_, struct page, hash_elem);
const struct page *b = hash_entry (b_, struct page, hash_elem);
return a->addr < b->addr;

3

(The use of UNUSED in these functions’ prototypes suppresses a warning that aux is un-
used. See Section B.3 [Function and Parameter Attributes], page 54, for information about
UNUSED. See Section A.8.6 [Hash Auxiliary Datal, page 53, for an explanation of aux.)

Then, we can create a hash table like this:

struct hash pages;

hash_init (&pages, page_hash, page_less, NULL);
Now we can manipulate the hash table we’'ve created. If p is a pointer to a struct page,
we can insert it into the hash table with:
hash_insert (&pages, &p->hash_elem);
If there’s a chance that pages might already contain a page with the same addr, then we
should check hash_insert()’s return value.

To search for an element in the hash table, use hash_find (). This takes a little setup,
because hash_find () takes an element to compare against. Here’s a function that will find
and return a page based on a virtual address, assuming that pages is defined at file scope:

Appendix A: Reference Guide 53

/* Returns the page containing the given virtual address,
or a null pointer if no such page exists. */

struct page *

page_lookup (const void *address)

{

struct page p;

struct hash_elem *e;

p.addr = address;

e = hash_find (&pages, &p.hash_elem);

return e != NULL ? hash_entry (e, struct page, hash_elem) : NULL;
}

struct page is allocated as a local variable here on the assumption that it is fairly small.
Large structures should not be allocated as local variables. See Section A.2.1 [struct thread],
page 24, for more information.

A similar function could delete a page by address using hash_delete().

A.8.6 Auxiliary Data

In simple cases like the example above, there’s no need for the aux parameters. In these
cases, just pass a null pointer to hash_init () for aux and ignore the values passed to the
hash function and comparison functions. (You'll get a compiler warning if you don’t use the
aux parameter, but you can turn that off with the UNUSED macro, as shown in the example,
or you can just ignore it.)

aux is useful when you have some property of the data in the hash table is both constant
and needed for hashing or comparison, but not stored in the data items themselves. For
example, if the items in a hash table are fixed-length strings, but the items themselves don’t
indicate what that fixed length is, you could pass the length as an aux parameter.

A.8.7 Synchronization

The hash table does not do any internal synchronization. It is the caller’s responsibility to
synchronize calls to hash table functions. In general, any number of functions that examine
but do not modify the hash table, such as hash_find() or hash_next(), may execute
simultaneously. However, these function cannot safely execute at the same time as any
function that may modify a given hash table, such as hash_insert() or hash_delete(),
nor may more than one function that can modify a given hash table execute safely at once.

It is also the caller’s responsibility to synchronize access to data in hash table elements.
How to synchronize access to this data depends on how it is designed and organized, as
with any other data structure.

Appendix B: Debugging Tools 54

Appendix B Debugging Tools

Many tools lie at your disposal for debugging Pintos. This appendix introduces you to a
few of them.

B.1 printf()

Don’t underestimate the value of printf (). The way printf () is implemented in Pintos,
you can call it from practically anywhere in the kernel, whether it’s in a kernel thread or
an interrupt handler, almost regardless of what locks are held.

printf () is useful for more than just examining data. It can also help figure out when
and where something goes wrong, even when the kernel crashes or panics without a useful
error message. The strategy is to sprinkle calls to printf () with different strings (e.g.
n<1>n 2>t L) throughout the pieces of code you suspect are failing. If you don’t
even see <1> printed, then something bad happened before that point, if you see <1> but
not <2>, then something bad happened between those two points, and so on. Based on
what you learn, you can then insert more printf () calls in the new, smaller region of
code you suspect. Eventually you can narrow the problem down to a single statement. See
Section B.6 [Triple Faults], page 63, for a related technique.

B.2 ASSERT

Assertions are useful because they can catch problems early, before they’d otherwise be
noticed. Ideally, each function should begin with a set of assertions that check its arguments
for validity. (Initializers for functions’ local variables are evaluated before assertions are
checked, so be careful not to assume that an argument is valid in an initializer.) You can
also sprinkle assertions throughout the body of functions in places where you suspect things
are likely to go wrong. They are especially useful for checking loop invariants.

Pintos provides the ASSERT macro, defined in ‘<debug.h>’; for checking assertions.

ASSERT (expression) [Macro]
Tests the value of expression. If it evaluates to zero (false), the kernel panics. The
panic message includes the expression that failed, its file and line number, and a
backtrace, which should help you to find the problem. See Section B.4 [Backtraces],
page 55, for more information.

B.3 Function and Parameter Attributes

These macros defined in ‘<debug.h>’ tell the compiler special attributes of a function or
function parameter. Their expansions are GCC-specific.

UNUSED [Macro]
Appended to a function parameter to tell the compiler that the parameter might not
be used within the function. It suppresses the warning that would otherwise appear.

NO_RETURN [Macro]
Appended to a function prototype to tell the compiler that the function never returns.
It allows the compiler to fine-tune its warnings and its code generation.

Appendix B: Debugging Tools 55

NO_INLINE [Macro]
Appended to a function prototype to tell the compiler to never emit the function
in-line. Occasionally useful to improve the quality of backtraces (see below).

PRINTF_FORMAT (format, first) [Macro]
Appended to a function prototype to tell the compiler that the function takes a
printf ()-like format string as the argument numbered format (starting from 1) and
that the corresponding value arguments start at the argument numbered first. This
lets the compiler tell you if you pass the wrong argument types.

B.4 Backtraces

When the kernel panics, it prints a “backtrace,” that is, a summary of how your program
got where it is, as a list of addresses inside the functions that were running at the time of
the panic. You can also insert a call to debug_backtrace(), prototyped in ‘<debug.h>’,
to print a backtrace at any point in your code. debug_backtrace_all(), also declared in
‘<debug.h>’, prints backtraces of all threads.

The addresses in a backtrace are listed as raw hexadecimal numbers, which are difficult
to interpret. We provide a tool called backtrace to translate these into function names and
source file line numbers. Give it the name of your ‘kernel.o’ as the first argument and the
hexadecimal numbers composing the backtrace (including the ‘0x’ prefixes) as the remaining
arguments. It outputs the function name and source file line numbers that correspond to
each address.

If the translated form of a backtrace is garbled, or doesn’t make sense (e.g. function A is
listed above function B, but B doesn’t call A), then it’s a good sign that you're corrupting
a kernel thread’s stack, because the backtrace is extracted from the stack. Alternatively, it
could be that the ‘kernel.o’ you passed to backtrace is not the same kernel that produced
the backtrace.

Sometimes backtraces can be confusing without any corruption. Compiler optimizations
can cause surprising behavior. When a function has called another function as its final
action (a tail call), the calling function may not appear in a backtrace at all. Similarly,
when function A calls another function B that never returns, the compiler may optimize
such that an unrelated function C appears in the backtrace instead of A. Function C is
simply the function that happens to be in memory just after A. In the threads project,
this is commonly seen in backtraces for test failures; see [pass() Fails], page 16, for more
information.

B.4.1 Example

Here’s an example. Suppose that Pintos printed out this following call stack, which is taken
from an actual Pintos submission for the file system project:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc010325a 0x804812c 0x8048a96 0x8048ac8.

You would then invoke the backtrace utility like shown below, cutting and pasting
the backtrace information into the command line. This assumes that ‘kernel.o’ is in the
current directory. You would of course enter all of the following on a single shell command
line, even though that would overflow our margins here:

Appendix B: Debugging Tools 56

backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

The backtrace output would then look something like this:

0xc0106eff: debug_panic (lib/debug.c:86)

0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)
0x0804812c: (unknown)

0x08048a96: (unknown)

0x08048ac8: (unknown)

(You will probably not see exactly the same addresses if you run the command above on
your own kernel binary, because the source code you compiled and the compiler you used
are probably different.)

The first line in the backtrace refers to debug_panic(), the function that implements

kernel panics. Because backtraces commonly result from kernel panics, debug_panic () will
often be the first function shown in a backtrace.

The second line shows file_seek() as the function that panicked, in this case as the
result of an assertion failure. In the source code tree used for this example, line 405 of
‘filesys/file.c’ is the assertion

ASSERT (file_ofs >= 0);

(This line was also cited in the assertion failure message.) Thus, file_seek() panicked
because it passed a negative file offset argument.

The third line indicates that seek () called file_seek (), presumably without validating
the offset argument. In this submission, seek() implements the seek system call.

The fourth line shows that syscall_handler (), the system call handler, invoked seek ().
The fifth and sixth lines are the interrupt handler entry path.

The remaining lines are for addresses below PHYS_BASE. This means that they refer
to addresses in the user program, not in the kernel. If you know what user program was
running when the kernel panicked, you can re-run backtrace on the user program, like so:
(typing the command on a single line, of course):

backtrace tests/filesys/extended/grow-too-big 0xc0106eff 0xc01102fb
0xc010dc22 0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96
0x8048ac8

The results look like this:

0xc0106eff: (unknown)

0xc01102fb: (unknown)

0xc010dc22: (unknown)

0xc010cf67: (unknown)

0xc0102319: (unknown)

0xc010325a: (unknown)

0x0804812c: test_main (...xtended/grow-too-big.c:20)
0x08048a96: main (tests/main.c:10)

Appendix B: Debugging Tools 57

0x08048ac8: _start (lib/user/entry.c:9)

You can even specify both the kernel and the user program names on the command line,
like so:

backtrace kernel.o tests/filesys/extended/grow-too-big 0xc0106eff
0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319 0xc010325a 0x804812c
0x8048a96 0x8048ac8

The result is a combined backtrace:

In kernel.o:

0xc0106eff: debug_panic (lib/debug.c:86)

0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)

In tests/filesys/extended/grow-too-big:

0x0804812c: test_main (...xtended/grow-too-big.c:20)
0x08048a96: main (tests/main.c:10)

0x08048ac8: _start (lib/user/entry.c:9)

Here’s an extra tip for anyone who read this far: backtrace is smart enough to strip
the Call stack: header and ‘.’ trailer from the command line if you include them. This
can save you a little bit of trouble in cutting and pasting. Thus, the following command
prints the same output as the first one we used:

backtrace kernel.o Call stack: 0xc0106eff 0xc01102fb 0xc010dc22
0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8.

B.5 GDB

You can run Pintos under the supervision of the GDB debugger. First, start Pintos with
the ‘--gdb’ option, e.g. pintos --gdb -- run mytest. Second, open a second terminal on
the same machine and use pintos-gdb to invoke GDB on ‘kernel.o’:!

pintos-gdb kermnel.o
and issue the following GDB command:
target remote localhost:1234

Now GDB is connected to the simulator over a local network connection. You can now
issue any normal GDB commands. If you issue the ‘c’ command, the simulated BIOS will
take control, load Pintos, and then Pintos will run in the usual way. You can pause the
process at any point with (Cal+Q).

B.5.1 Using GDB

You can read the GDB manual by typing info gdb at a terminal command prompt. Here’s
a few commonly useful GDB commands:

! pintos-gdb is a wrapper around gdb (80x86) or i386-elf-gdb (SPARC) that loads the Pintos macros
at startup.

Appendix B: Debugging Tools 58

c [GDB Command]
Continues execution until or the next breakpoint.

break function [GDB Command]

break file:line [GDB Command]

break *address [GDB Command|

Sets a breakpoint at function, at line within file, or address. (Use a ‘0x’ prefix to
specify an address in hex.)

Use break main to make GDB stop when Pintos starts running.
p expression [GDB Command]

Evaluates the given expression and prints its value. If the expression contains a
function call, that function will actually be executed.

1 *address [GDB Command]
Lists a few lines of code around address. (Use a ‘0x’ prefix to specify an address in
hex.)

bt [GDB Command]|
Prints a stack backtrace similar to that output by the backtrace program described
above.

p/a address [GDB Command]

Prints the name of the function or variable that occupies address. (Use a ‘0x’ prefix
to specify an address in hex.)

diassemble function [GDB Command]
Disassembles function.

We also provide a set of macros specialized for debugging Pintos, written by Godmar
Back gback@cs.vt.edu. You can type help user-defined for basic help with the macros.
Here is an overview of their functionality, based on Godmar’s documentation:

debugpintos [GDB Macro]
Attach debugger to a waiting pintos process on the same machine. Shorthand for
target remote localhost:1234.

dumplist Iist type element [GDB Macro]
Prints the elements of list, which should be a struct list that contains elements of
the given type (without the word struct) in which element is the struct list_elem
member that links the elements.

Example: dumplist all_list thread allelem prints all elements of struct thread
that are linked in struct list all_list using the struct list_elem allelem which
is part of struct thread.

btthread thread [GDB Macro]
Shows the backtrace of thread, which is a pointer to the struct thread of the thread
whose backtrace it should show. For the current thread, this is identical to the
bt (backtrace) command. It also works for any thread suspended in schedule(),
provided you know where its kernel stack page is located.

mailto:gback@cs.vt.edu

Appendix B: Debugging Tools 59

btthreadlist list element [GDB Macro]
Shows the backtraces of all threads in Iist, the struct 1ist in which the threads are
kept. Specify element as the struct 1list_elem field used inside struct thread to
link the threads together.

Example: btthreadlist all_list allelem shows the backtraces of all threads con-
tained in struct list all_list, linked together by allelem. This command is
useful to determine where your threads are stuck when a deadlock occurs. Please see
the example scenario below.

btthreadall [GDB Macro]
Short-hand for btthreadlist all_list allelem.

btpagefault [GDB Macro]
Print a backtrace of the current thread after a page fault exception. Normally, when
a page fault exception occurs, GDB will stop with a message that might say:?

Program received signal 0, Signal O.
0xc0102320 in intrOe_stub ()

In that case, the bt command might not give a useful backtrace. Use btpagefault
instead.

You may also use btpagefault for page faults that occur in a user process. In
this case, you may wish to also load the user program’s symbol table using the
loadusersymbols macro, as described above.

hook-stop [GDB Macro]
GDB invokes this macro every time the simulation stops, which Bochs will do for
every processor exception, among other reasons. If the simulation stops due to a page
fault, hook-stop will print a message that says and explains further whether the page
fault occurred in the kernel or in user code.

If the exception occurred from user code, hook-stop will say:

pintos-debug: a page fault exception occurred in user mode

pintos-debug: hit ’c’ to continue, or ’s’ to step to intr_handler
In Project 2, a page fault in a user process leads to the termination of the process.
You should expect those page faults to occur in the robustness tests where we test
that your kernel properly terminates processes that try to access invalid addresses.
To debug those, set a break point in page_fault() in ‘exception.c’, which you will
need to modify accordingly.

In Project 3, a page fault in a user process no longer automatically leads to the
termination of a process. Instead, it may require reading in data for the page the
process was trying to access, either because it was swapped out or because this is the
first time it’s accessed. In either case, you will reach page_fault () and need to take
the appropriate action there.

If the page fault did not occur in user mode while executing a user process, then it
occurred in kernel mode while executing kernel code. In this case, hook-stop will
print this message:

2 To be precise, GDB will stop only when running under Bochs. When running under QEMU, you must
set a breakpoint in the page_fault function to stop execution when a page fault occurs. In that case,
the btpagefault macro is unnecessary.

Appendix B: Debugging Tools 60

pintos-debug: a page fault occurred in kernel mode
followed by the output of the btpagefault command.

Before Project 3, a page fault exception in kernel code is always a bug in your kernel,
because your kernel should never crash. Starting with Project 3, the situation will
change if you use the get_user() and put_user() strategy to verify user memory
accesses (see (undefined) [Accessing User Memory], page (undefined)).

B.5.2 Example GDB Session

This section narrates a sample GDB session, provided by Godmar Back. This example
illustrates how one might debug a Project 1 solution in which occasionally a thread that
calls timer_sleep() is not woken up. With this bug, tests such as m1fgs_load_1 get stuck.

This session was captured with a slightly older version of Bochs and the GDB macros
for Pintos, so it looks slightly different than it would now. Program output is shown in
normal type, user input in strong type.

First, I start Pintos:

$ pintos -v —gdb — -q -mlfgs run mlifgs-load-1
Writing command line to /tmp/gDA1qTB5Uf.dsk...

bochs -q
Bochs x86 Emulator 2.2.5
Build from CVS snapshot on December 30, 2005
000000000001 [] reading configuration from bochsrc.txt
000000000001 [] Enabled gdbstub
000000000001 [] installing nogui module as the Bochs GUI
000000000001 [] using log file bochsout.txt

Waiting for gdb connection on localhost:1234

Then, I open a second window on the same machine and start GDB:

$ pintos-gdb kernel.o

GNU gdb Red Hat Linux (6.3.0.0-1.84rh)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditioms.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...

Using host libthread_db library "/lib/libthread_db.so.1".

Then, I tell GDB to attach to the waiting Pintos emulator:

(gdb) debugpintos

Remote debugging using localhost:1234
0x0000£££0 in ?? ()

Reply contains invalid hex digit 78

Now I tell Pintos to run by executing ¢ (short for continue) twice:
(gdb) ¢
Continuing.
Reply contains invalid hex digit 78
(gdb) ¢
Continuing.

Now Pintos will continue and output:

Appendix B: Debugging Tools 61

Pintos booting with 4,096 kB RAM...

Kernel command line: -q -mlfgs run mlfgs-load-1

374 pages available in kernel pool.

373 pages available in user pool.

Calibrating timer... 102,400 loops/s.

Boot complete.

Executing ’mlfgs-load-1’:

(mlfgs-load-1) begin

(mlfgs-load-1) spinning for up to 45 seconds, please wait...
(mlfgs-load-1) load average rose to 0.5 after 42 seconds
(mlfgs-load-1) sleeping for another 10 seconds, please wait...

...until it gets stuck because of the bug I had introduced. I hit in the debugger
window:

Program received signal 0, Signal O.

0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
649 while (i <= PRI_MAX && list_empty (&ready_list[il))

(gdb)

The thread that was running when I interrupted Pintos was the idle thread. If I run
backtrace, it shows this backtrace:

(gdb) bt
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in 77 ()

Not terribly useful. What I really like to know is what’s up with the other thread (or
threads). Since I keep all threads in a linked list called all_list, linked together by a
struct list_elem member named allelem, I can use the btthreadlist macro from the
macro library I wrote. btthreadlist iterates through the list of threads and prints the
backtrace for each thread:

(gdb) btthreadlist all list allelem
pintos-debug: dumping backtrace of thread ’main’ @0xc002f£000
#0 0xc0101820 in schedule () at ../../threads/thread.c:722
#1 0xc0100£f8f in thread_block () at ../../threads/thread.c:324
#2 0xc0104755 in timer_sleep (ticks=1000) at ../../devices/timer.c:141
#3 0xcO010bf7c¢ in test_mlfgs_load_1 () at ../../tests/threads/mlfgs-load-1.c:49
#4 0xcOl0aabb in run_test (name=0xc0007d8c "mlfgs-load-1")
at ../../tests/threads/tests.c:50
#5 0xc0100647 in run_task (argv=0xc0110d28) at ../../threads/init.c:281
#6 0xc0100721 in run_actions (argv=0xc0110d28) at ../../threads/init.c:331
#7 0xc01000c7 in main () at ../../threads/init.c:140

pintos-debug: dumping backtrace of thread ’idle’ @0xc0116000
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in ?? ()

Appendix B: Debugging Tools 62

In this case, there are only two threads, the idle thread and the main thread. The kernel
stack pages (to which the struct thread points) are at 0xc0116000 and 0xc002£000,
respectively. The main thread is stuck in timer_sleep(), called from test_mlfgs_load_1.

Knowing where threads are stuck can be tremendously useful, for instance when diag-
nosing deadlocks or unexplained hangs.

loadusersymbols [GDB Macro]
You can also use GDB to debug a user program running under Pintos. To do that,
use the loadusersymbols macro to load the program’s symbol table:

loadusersymbols program
where program is the name of the program’s executable (in the host file system, not
in the Pintos file system). For example, you may issue:

(gdb) loadusersymbols tests/userprog/exec-multiple

add symbol table from file "tests/userprog/exec-multiple" at

.text_addr = 0x80480a0

(gdb)
After this, you should be able to debug the user program the same way you would the
kernel, by placing breakpoints, inspecting data, etc. Your actions apply to every user
program running in Pintos, not just to the one you want to debug, so be careful in in-
terpreting the results: GDB does not know which process is currently active (because
that is an abstraction the Pintos kernel creates). Also, a name that appears in both
the kernel and the user program will actually refer to the kernel name. (The latter
problem can be avoided by giving the user executable name on the GDB command
line, instead of ‘kernel.o’, and then using loadusersymbols to load ‘kernel.o’.)
loadusersymbols is implemented via GDB’s add-symbol-file command.

B.5.3 FAQ

GDB can’t connect to Bochs.
If the target remote command fails, then make sure that both GDB and
pintos are running on the same machine by running hostname in each ter-
minal. If the names printed differ, then you need to open a new terminal for
GDB on the machine running pintos.

GDB doesn’t recognize any of the macros.
If you start GDB with pintos-gdb, it should load the Pintos macros automat-
ically. If you start GDB some other way, then you must issue the command
source pintosdir/src/misc/gdb-macros, where pintosdir is the root of your
Pintos directory, before you can use them.

Can I debug Pintos with DDD?
Yes, you can. DDD invokes GDB as a subprocess, so you’ll need to tell it to
invokes pintos-gdb instead:
ddd --gdb --debugger pintos-gdb

Can I use GDB inside Emacs?
Yes, you can. Emacs has special support for running GDB as a subprocess.
Type M-x gdb and enter your pintos-gdb command at the prompt. The Emacs
manual has information on how to use its debugging features in a section titled
“Debuggers.”

Appendix B: Debugging Tools 63

GDB is doing something weird.
If you notice strange behavior while using GDB, there are three possibilities:
a bug in your modified Pintos, a bug in Bochs’s interface to GDB or in GDB
itself, or a bug in the original Pintos code. The first and second are quite likely,
and you should seriously consider both. We hope that the third is less likely,
but it is also possible.

B.6 Triple Faults

When a CPU exception handler, such as a page fault handler, cannot be invoked because it
is missing or defective, the CPU will try to invoke the “double fault” handler. If the double
fault handler is itself missing or defective, that’s called a “triple fault.” A triple fault causes
an immediate CPU reset.

Thus, if you get yourself into a situation where the machine reboots in a loop, that’s
probably a “triple fault.” In a triple fault situation, you might not be able to use printf ()
for debugging, because the reboots might be happening even before everything needed for
printf () is initialized.

There are at least two ways to debug triple faults. First, you can run Pintos in Bochs
under GDB (see Section B.5 [GDB], page 57). If Bochs has been built properly for Pintos,
a triple fault under GDB will cause it to print the message “Triple fault: stopping for gdb”
on the console and break into the debugger. (If Bochs is not running under GDB, a triple
fault will still cause it to reboot.) You can then inspect where Pintos stopped, which is
where the triple fault occurred.

Another option is what I call “debugging by infinite loop.” Pick a place in the Pintos
code, insert the infinite loop for (;;); there, and recompile and run. There are two likely
possibilities:

e The machine hangs without rebooting. If this happens, you know that the infinite loop
is running. That means that whatever caused the reboot must be after the place you
inserted the infinite loop. Now move the infinite loop later in the code sequence.

e The machine reboots in a loop. If this happens, you know that the machine didn’t make
it to the infinite loop. Thus, whatever caused the reboot must be before the place you
inserted the infinite loop. Now move the infinite loop earlier in the code sequence.

If you move around the infinite loop in a “binary search” fashion, you can use this
technique to pin down the exact spot that everything goes wrong. It should only take a few
minutes at most.

B.7 Modifying Bochs

An advanced debugging technique is to modify and recompile the simulator. This proves
useful when the simulated hardware has more information than it makes available to the
OS. For example, page faults have a long list of potential causes, but the hardware does
not report to the OS exactly which one is the particular cause. Furthermore, a bug in the
kernel’s handling of page faults can easily lead to recursive faults, but a “triple fault” will
cause the CPU to reset itself, which is hardly conducive to debugging.

In a case like this, you might appreciate being able to make Bochs print out
more debug information, such as the exact type of fault that occurred. It’s

Appendix B: Debugging Tools 64

not very hard. You start by retrieving the source code for Bochs 2.2.6 from
http://bochs.sourceforge.net and saving the file ‘bochs-2.2.6.tar.gz’ into a
directory. The script ‘pintos/src/misc/bochs-2.2.6-build.sh’ applies a number
of patches contained in ‘pintos/src/misc’ to the Bochs tree, then builds Bochs and
installs it in a directory of your choice. Run this script without arguments to learn usage
instructions. To use your ‘bochs’ binary with pintos, put it in your PATH, and make sure
that it is earlier than ‘/usr/class/cs140/ ‘uname -m‘/bin/bochs’.

Of course, to get any good out of this you’ll have to actually modify Bochs. Instructions
for doing this are firmly out of the scope of this document. However, if you want to
debug page faults as suggested above, a good place to start adding printf ()s is BX_CPU_
C::dtranslate_linear() in ‘cpu/paging.cc’.

B.8 Tips

The page allocator in ‘threads/palloc.c’ and the block allocator in ‘threads/malloc.c’
clear all the bytes in memory to Oxcc at time of free. Thus, if you see an attempt to
dereference a pointer like Oxccccccce, or some other reference to Oxcc, there’s a good
chance you're trying to reuse a page that’s already been freed. Also, byte Oxcc is the
CPU opcode for “invoke interrupt 3,” so if you see an error like Interrupt 0x03 (#BP
Breakpoint Exception), then Pintos tried to execute code in a freed page or block.

An assertion failure on the expression sec_no < d->capacity indicates that Pintos tried
to access a file through an inode that has been closed and freed. Freeing an inode clears its
starting sector number to Oxcccccccce, which is not a valid sector number for disks smaller
than about 1.6 TB.

http://bochs.sourceforge.net

Appendix C: Installing Pintos 65

Appendix C Installing Pintos

This chapter explains how to install a Pintos development environment on your own ma-
chine. If you are using a Pintos development environment that has been set up by someone
else, you do not need to read this chapter or follow these instructions.

The Pintos development environment is targeted at Unix-like systems. It has been most
extensively tested on GNU/Linux, in particular the Debian and Ubuntu distributions, and
Solaris. It is not designed to install under any form of Windows.

Prerequisites for installing a Pintos development environment include the following, on
top of standard Unix utilities:

e Required: GCC. Version 4.0 or later is preferred. Version 3.3 or later should work.
If the host machine has an 80x86 processor, then GCC should be available as gcc;
otherwise, an 80x86 cross-compiler should be available as 1386-elf-gcc. A sample set
of commands for installing GCC 3.3.6 as a cross-compiler are included in ‘src/misc/
gcc-3.3.6-cross-howto’.

e Required: GNU binutils. Pintos uses addr2line, ar, 1d, objcopy, and ranlib. If the
host machine is not an 80x86, versions targeting 80x86 should be available with an
‘1386-elf-’ prefix.

e Required: Perl. Version 5.8.0 or later is preferred. Version 5.6.1 or later should work.

e Required: GNU make, version 3.80 or later.

e Recommended: QEMU, version 0.11.0 or later. If QEMU is not available, Bochs can
be used, but its slowness is frustrating.

e Recommended: GDB. GDB is helpful in debugging (see Section B.5 [GDB], page 57).
If the host machine is not an 80x86, a version of GDB targeting 80x86 should be
available as ‘1386-elf-gdb’.

e Recommended: X. Being able to use an X server makes the virtual machine feel more
like a physical machine, but it is not strictly necessary.

e Optional: Texinfo, version 4.5 or later. Texinfo is required to build the PDF version of
the documentation.

e Optional: TEX. Also required to build the PDF version of the documentation.
e Optional: VMware Player. This is a third platform that can also be used to test Pintos.

Once these prerequisites are available, follow these instructions to install Pintos:
1. Install Bochs, version 2.2.6, as described below (see Section C.1 [Building Bochs for
Pintos], page 66).
2. Install scripts from ‘src/utils’. Copy ‘backtrace’, ‘pintos’, ‘pintos-gdb’,
‘pintos-mkdisk’, ‘pintos-set-cmdline’, and ‘Pintos.pm’ into the default PATH.

3. Install ‘src/misc/gdb-macros’ in a public location. Then use a text editor to edit the
installed copy of ‘pintos-gdb’, changing the definition of GDBMACROS to point to where
you installed ‘gdb-macros’. Test the installation by running pintos-gdb without any
arguments. If it does not complain about missing ‘gdb-macros’, it is installed correctly.

4. Compile the remaining Pintos utilities by typing make in ‘src/utils’. Install
‘squish-pty’ somewhere in PATH. To support VMware Player, install ‘squish-unix’.
If your Perl is older than version 5.8.0, also install ‘setitimer-helper’; otherwise, it
is unneeded.

http://gcc.gnu.org/
http://www.gnu.org/software/binutils/
http://www.perl.org
http://www.gnu.org/software/make/
http://fabrice.bellard.free.fr/qemu/
http://www.gnu.org/software/gdb/
http://www.x.org/
http://www.gnu.org/software/texinfo/
http://www.tug.org/
http://www.vmware.com/
http://bochs.sourceforge.net/

Appendix C: Installing Pintos 66

5. Pintos should now be ready for use. If you have the Pintos reference solutions, which
are provided only to faculty and their teaching assistants, then you may test your
installation by running make check in the top-level ‘tests’ directory. The tests take
between 20 minutes and 1 hour to run, depending on the speed of your hardware.

6. Optional: Build the documentation, by running make dist in the top-level ‘doc’ di-
rectory. This creates a ‘WWW’ subdirectory within ‘doc’ that contains HTML and PDF
versions of the documentation, plus the design document templates and various hard-
ware specifications referenced by the documentation. Building the PDF version of the
manual requires Texinfo and TEX (see above). You may install ‘WwW’ wherever you find
most useful.

The ‘doc’ directory is not included in the ‘.tar.gz’ distributed for Pintos. It is in the

Pintos CVS tree available via :pserver:anonymous@footstool.stanford.edu:/var/lib/cvs,|]
in the pintos module. The CVS tree is not the authoritative source for Stanford

course materials, which should be obtained from the course website.

C.1 Building Bochs for Pintos

Upstream Bochs has bugs and warts that should be fixed when used with Pintos. Thus,
Bochs should be installed manually for use with Pintos, instead of using the packaged
version of Bochs included with an operating system distribution.

Two different Bochs binaries should be installed. One, named simply bochs, should
have the GDB stub enabled, by passing ‘--enable-gdb-stub’ to the Bochs configure
script. The other, named bochs-dbg, should have the internal debugger enabled, by passing
‘~—enable-debugger’ to configure. (The pintos script selects a binary based on the
options passed to it.) In each case, the X, terminal, and “no GUI” interfaces should be
configured, by passing ‘--with-x --with-x11 --with-term --with-nogui’ to configure.

This version of Pintos is designed for use with Bochs 2.2.6. A number of patches for this
version of Bochs are included in ‘src/misc’:

‘bochs-2.2.6-big-endian.patch’
Makes the GDB stubs work on big-endian systems such as Solaris/Sparc, by
doing proper byteswapping. It should be harmless elsewhere.

‘bochs-2.2.6-jitter.patch’
Adds the “jitter” feature, in which timer interrupts are delivered at random
intervals (see Section 1.2.4 [Debugging versus Testing], page 5).

‘bochs-2.2.6-triple-fault.patch’
Causes Bochs to break to GDB when a triple fault occurs and the GDB stub
is active (see Section B.6 [Triple Faults|, page 63).

‘bochs-2.2.6-ms-extensions.patch’
Needed for Bochs to compile with GCC on some hosts. Probably harmless
elsewhere.

‘bochs-2.2.6-solaris-tty.patch’
Needed for Bochs to compile in terminal support on Solaris hosts. Probably
harmless elsewhere.

Appendix C: Installing Pintos

‘bochs-2.2.6-page-fault-segv.patch’

‘bochs-2.2.6-paranoia.patch’

‘bochs-2.2.6-solaris-link.patch’

67

Makes the GDB stub report a SIGSEGV to the debugger when a page-fault
exception occurs, instead of “signal 0.” The former can be ignored with handle
SIGSEGV nostop but the latter cannot.

Fixes compile error with modern versions of GCC.

Needed on Solaris hosts. Do not apply it elsewhere.

To apply all the patches, cd into the Bochs directory, then type:

patch
patch
patch
patch
patch
patch
patch
patch

_p1
_pl
_pl
_pl
_pl
_p1
_Pl
_pl

<

AN AN AN AN AN A

$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.
$PINTOSDIR/src/misc/bochs-2.

2.
.6-jitter.patch
.6-triple-fault.patch
.6-ms-extensions.patch
.6-solaris-tty.patch
.6-page-fault-segv.patch
.6-paranoia.patch
.6-solaris-link.patch

NN DNNDDNDDN

2

6-big-endian.patch

You will have to supply the proper $PINTOSDIR, of course. You can use patch’s ‘--dry-run’
option if you want to test whether the patches would apply cleanly before trying to apply

them.

Sample commands to build and install Bochs for Pintos are supplied in
‘src/misc/bochs-2.2.6-build.sh’.

Appendix C: Bibliography 68

Bibliography

Hardware References

[IA32-v1]. IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic
Architecture. Basic 80x86 architecture and programming environment. Available via
developer.intel.com. Section numbers in this document refer to revision 18.

[IA32-v2a]. TA-32 Intel Architecture Software Developer’s Manual Volume 2A: Instruction
Set Reference A-M. 80x86 instructions whose names begin with A through M. Available
via developer.intel.com. Section numbers in this document refer to revision 18.

[IA32-v2b]. IA-32 Intel Architecture Software Developer’s Manual Volume 2B: Instruction
Set Reference N-Z. 80x86 instructions whose names begin with N through Z. Available via
developer.intel.com. Section numbers in this document refer to revision 18.

[IA32-v3a]. IA-32 Intel Architecture Software Developer’s Manual Volume 3A: System Pro-
gramming Guide. Operating system support, including segmentation, paging, tasks, inter-
rupt and exception handling. Available via developer.intel.com. Section numbers in this
document refer to revision 18.

[FreeVGA]. FreeVGA Project. Documents the VGA video hardware used in PCs.

[kbd]. Keyboard scancodes. Documents PC keyboard interface.

[ATA-3]. AT Attachment-3 Interface (ATA-3) Working Draft. Draft of an old version of
the ATA aka IDE interface for the disks used in most desktop PCs.

[PC16550D]. National Semiconductor PC16550D Universal Asynchronous Re-
ceiver /Transmitter with FIFOs. Datasheet for a chip used for PC serial ports.

[8254]. Intel 8254 Programmable Interval Timer. Datasheet for PC timer chip.

[8259A]. Intel 8259A Programmable Interrupt Controller (8259A /8259A-2). Datasheet for
PC interrupt controller chip.

[MC146818A]. Motorola MC146818A Real Time Clock Plus Ram (RTC). Datasheet for
PC real-time clock chip.

Software References

[ELF1]. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
Version 1.2 Book I: Executable and Linking Format. The ubiquitous format for executables
in modern Unix systems.

[ELF2]. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
Version 1.2 Book II: Processor Specific (Intel Architecture). 80x86-specific parts of ELF.
[ELF3]. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
Version 1.2 Book III: Operating System Specific (UNIX System V Release 4). Unix-specific
parts of ELF.

[SysV-ABI]. System V Application Binary Interface: Edition 4.1. Specifies how applica-
tions interface with the OS under Unix.

[SysV-i386]. System V Application Binary Interface: Intel386 Architecture Processor Sup-
plement: Fourth Edition. 80x86-specific parts of the Unix interface.

developer.intel.com
developer.intel.com
developer.intel.com
developer.intel.com
specs/freevga/home.htm
specs/kbd/scancodes.html
specs/ata-3-std.pdf
specs/pc16550d.pdf
specs/pc16550d.pdf
specs/8254.pdf
specs/8259A.pdf
specs/mc146818a.pdf
specs/elf.pdf
specs/elf.pdf
specs/elf.pdf
specs/elf.pdf
specs/elf.pdf
specs/elf.pdf
specs/sysv-abi-4.1.pdf
specs/sysv-abi-i386-4.pdf
specs/sysv-abi-i386-4.pdf

Appendix C: Bibliography 69

[SysV-ABI-update]. System V Application Binary Interface—DRAFT—24 April 2001. A
draft of a revised version of [SysV-ABI] which was never completed.

[SUSv3]. The Open Group, Single UNIX Specification V3, 2001.

[Partitions]. A. E. Brouwer, Minimal partition table specification, 1999.

[IntrList]. R. Brown, Ralf Brown’s Interrupt List, 2000.

Operating System Design References

[Christopher|. W. A. Christopher, S. J. Procter, T. E. Anderson, The Nachos
instructional operating system. Proceedings of the USENIX Winter 1993 Conference.
http://portal.acm.org/citation.cfm?id=1267307.

[Dijkstral. E. W. Dijkstra, The structure of the “THE” multiprogramming system. Com-
munications of the ACM 11(5):341-346, 1968. http://doi.acm.org/10.1145/363095.363143.]}
[Hoare]. C. A. R. Hoare, Monitors: An Operating System Structuring Concept. Commu-
nications of the ACM, 17(10):549-557, 1974. http://www.acm.org/classics/feb96/.
[Lampson]. B. W. Lampson, D. D. Redell, Experience with processes and
monitors in Mesa. Communications of the ACM, 23(2):105-117, 1980.
http://doi.acm.org/10.1145/358818.358824.

[McKusick]. M. K. McKusick, K. Bostic, M. J. Karels, J. S. Quarterman, The Design and
Implementation of the 4.4BSD Operating System. Addison-Wesley, 1996.

[Wilson|. P. R. Wilson, M. S. Johnstone, M. Neely, D. Boles, Dynamic Storage Allocation:
A Survey and Critical Review. International Workshop on Memory Management, 1995.
http://www.cs.utexas.edu/users/oops/papers.html#allocsrv.

specs/sysv-abi-update.html/contents.html
http://www.unix.org/single_unix_specification/
specs/partitions/partition_tables.html
http://www.ctyme.com/rbrown.htm
http://portal.acm.org/citation.cfm?id=1267307
http://doi.acm.org/10.1145/363095.363143
http://www.acm.org/classics/feb96/
http://doi.acm.org/10.1145/358818.358824
http://www.cs.utexas.edu/users/oops/papers.html#allocsrv

Appendix C: License 70

License

Pintos, including its documentation, is subject to the following license:

Copyright (© 2004, 2005, 2006 Board of Trustees, Leland Stanford Jr. Univer-
sity. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

A few individual files in Pintos were originally derived from other projects, but they
have been extensively modified for use in Pintos. The original code falls under the original
license, and modifications for Pintos are additionally covered by the Pintos license above.

In particular, code derived from Nachos is subject to the following license:

Copyright (©) 1992-1996 The Regents of the University of California. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documen-
tation for any purpose, without fee, and without written agreement is hereby
granted, provided that the above copyright notice and the following two para-
graphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE
TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS
ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA
HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

	Introduction
	READ ME FIRST
	Getting Started
	Source Tree Overview
	Building Pintos
	Running Pintos
	Debugging versus Testing

	Legal and Ethical Issues
	Acknowledgements
	Trivia

	Assignment Description
	Requirements
	Alarm Clock
	Batch scheduling
	Design Document

	Background
	Understanding Threads
	Source Files
	devices code
	lib files

	Synchronization
	Development Suggestions

	FAQ
	Alarm Clock FAQ

	How to test - What to submit
	Testing
	Submission
	Design Document
	Source Code

	Reference Guide
	Loading
	The Loader
	Low-Level Kernel Initialization
	High-Level Kernel Initialization
	Physical Memory Map

	Threads
	struct thread
	Thread Functions
	Thread Switching

	Synchronization
	Disabling Interrupts
	Semaphores
	Locks
	Monitors
	Monitor Example

	Optimization Barriers

	Interrupt Handling
	Interrupt Infrastructure
	Internal Interrupt Handling
	External Interrupt Handling

	Memory Allocation
	Page Allocator
	Block Allocator

	Virtual Addresses
	Page Table
	Creation, Destruction, and Activation
	Inspection and Updates
	Accessed and Dirty Bits
	Page Table Details
	Structure
	Page Table Entry Format
	Page Directory Entry Format

	Hash Table
	Data Types
	Basic Functions
	Search Functions
	Iteration Functions
	Hash Table Example
	Auxiliary Data
	Synchronization

	Debugging Tools
	printf()
	ASSERT
	Function and Parameter Attributes
	Backtraces
	Example

	GDB
	Using GDB
	Example GDB Session
	FAQ

	Triple Faults
	Modifying Bochs
	Tips

	Installing Pintos
	Building Bochs for Pintos

	Bibliography
	Hardware References
	Software References
	Operating System Design References

	License

