
Lab 1: Developing a simple shell
Operating Systems Course

Chalmers and Gothenburg University

August 7, 2020

1 Introduction
In this lab, you will develop your own shell from scratch. A shell is a program that provides an interface
to the operating system. It interprets the user commands and executes them on the system as intended
by the user.

For example, a user that wants to view the list of files inside a directory types ls inside the shell. The
shell processes/parses the string “ls” and starts a search for the binary ls on the system. If the program
ls is installed on the system, the shell creates a new child process that executes the program ls. In
the meanwhile, the parent process (the shell) waits for that child process to finish its execution. Upon
completion of the execution, the shell comes back to the command prompt waiting for the next command
from the input.

Apart from this basic command interpretation, a shell can be used to handle more advanced commands
that specify input and output redirection, running commands in the background, combining multiple
commands using pipes, etc. These advanced features are described in more detail in the following section.

2 Specifications
In order to pass the lab, your shell, called lsh, needs to implement the following functionality correctly:

1. It must allow users to execute simple commands such as ls, date or who. It should be able to find
the location of commands (e.g., if a command is in /usr/bin, /usr/local/bin or any other folder),
so it needs to be aware of the path where it should search for commands. The standard convention
on UNIX systems is that the environment variable PATH contains the list of directories that should
be searched.

2. It must be able to execute commands in the background so that many programs can execute at
the same time. For example,

$ sleep 30 &

runs the command sleep 30 in the background.

3. It must support the use of one or more pipes e.g.

$ ls | grep out | wc -w

outputs the number of files with filenames that contain the word “out” in the directory.

4. It must allow redirection of the standard input and output to file. For example,

$ wc -l < /etc/passwd > accounts

creates a new file “accounts” containing the number of accounts on the machine.

5. It must provide cd and exit as built-in functions.

6. Pressing Ctrl-C should terminate the execution of a program running on your shell, but not the
execution of the shell itself.

7. Ctrl-C should not terminate any background jobs.

Important: Your shell has to be completely independent, and it is not allowed to delegate the command
execution to other available shells. It is not allowed to use a system call system() to invoke sh,
bash or any other system shell.

3 Implementation
You should download the lab code from canvas. The code already contains a skeleton implementation
of the shell, in the file lsh.c, which you have to extend with the required functionality. All your
implementation should be integrated into that file, since it is the only one which will be submitted for
grading.

1

pgm:
rstdin:	NULL
rstdout:	"apa"
rstderr:	NULL
background:	FALSE

next:
pgmlist:

next:	NULL
pgmlist:

"wc"
NULL

"ls"
"-l"
NULL

Command
Pgm Pgm

char	** char	**

Figure 1: Example command structure.

The skeleton implementation handles the parsing of commands for you. It uses the GNU readline
library, which means that commands can be entered using the same features as in tcsh. Further, a
history function is provided, allowing the user to browse through previous commands using Ctrl-P and
Ctrl-N. More specifically, the skeleton lsh contains the function:

int parse (char *line, Command *cmd)

which parses a command and stores it in the cmd variable. The parse function returns 1 if there are no
errors and −1 otherwise.

For example, the following code

int r;
Command cmd;
r = parse("ls -l | wc > apa", &cmd);

returns r equal to 1. After the call, cmd will have the structure shown in Figure 1. Note that commands
are processed last-to-first (for a good reason!). You can take a look at the DebugPrintCommand function
in lsh.c for an example of how to handle the Command structure.

3.1 Development and Debugging
It is possible to implement the functionality listed in the specifications for lsh in the order that they are
listed. Implement one, test it, and then move on to the next one. You should test all features of your
shell on the Chalmers remote servers (remote11.chalmers.se/remote12.chalmers.se), since that is where
the grading will take place.

To be able to carry out the lab successfully, you will have to study the manual pages for various system
calls. For some of them, e.g. exec(), several variants exist. You need to figure out which one suits you
better; sometimes, there is more than one that is suitable. Some system calls that you will definitely
need are: fork(), exec(), wait(), stat(), signal(), pipe(), dup().

Clean code guidelines To increase your chances of passing the lab, make sure your code is clean and
easy to understand. The following guidelines are a good place to start.

X Format your code! Most text editors can do this automatically for you.

X Use meaningful variable names.

X Write comments to explain difficult or strange parts of the code.

X Remove debugging statements before submission (e.g., printfs, PrintCommand, etc.)

X Verify that your code compiles and runs correctly on remote11/remote12.chalmers.se

2

Observing processes with top A handy command while testing your code is top. By having a
second terminal running top in the same machine as the one running your lsh, you can easily observe
all the processes spawned by your lsh implementation, as well as their status (i.e., if they are running
or if some have turned into zombies).

To get started with top on the chalmers remote servers, run top and type u, followed by your CID and
[enter] to filter only processes started by you. Afterward, press V to enable the “forest view” where
process trees are grouped together. After that, you can start your lsh and observe the processes it spawns
below it in top’s tree view. Pay special attention to the “S” column that shows the status of each process.
Consult the manual of top for more details: https://man7.org/linux/man-pages/man1/top.1.html.

4 Code & Report Submission
To pass the lab, you need to implement all the requested specifications and verify your code with the
self-test examples found below. You also need to write a report where you describe the design and
behavior of your solution. Finally, you need to upload both the report and your code to Canvas. The
following instructions describe the submission process in detail:

1. Writing the report For your report, begin by describing the implementation of your solution.
More specifically, briefly analyze how you implemented each of the specifications described in § 2,
what problems you encountered and how you dealt with them. Afterwards, go through the self-
test examples found below. Include the output of each command in your report, as well as the
answers to the questions. Make sure to justify your answer when your shell behaves in a strange
or unexpected manner.

2. Preparing the code After you have verified that your code works correctly on remote11/12,
run the prepare-submission script found in the lab folder. The script will check that your code
compiles correctly and it will create an archive with only the necessary files for grading.

3. Final submission For the final submission, prepare an archive containing the archive of your code
(prepared as per the instructions above) and the report file and upload it to canvas.

4.1 Self-Test Examples
The following examples will help you verify that your solution correctly implements the required speci-
fications. Run all the commands in your shell and include the output of each command in your report.
Make sure to also include answers to all the questions in your report.

4.1.1 Simple Commands

$ date
$ hello

The first command exists and the second one does not. Observe the system calls that are executed. If
any of the programs fail, what is printed? Where? What happens to any child processes that your shell
has created?

4.1.2 Commands with parameters

$ ls -al -p

4.1.3 Redirection with in and out files

$ ls -al > tmp.1
$ cat < tmp.1 > tmp.2
$ diff tmp.1 tmp.2

Is the output of diff what you expected?

4.1.4 Background Processes

$ sleep 60 &
$ sleep 60 &
$ sleep 60

3

https://man7.org/linux/man-pages/man1/top.1.html

Try to look at the parent process that is waiting for the child process using top, as described in the
debugging section. Run the list of commands several times and use kill to see after which command it is
possible to generate a prompt.

Try pressing Ctrl-C in the lsh after the last sleep. Does the foreground process stop? Do the background
processes also stop? What is the expected behavior? Wait 60 seconds. Are there any zombie processes
left?

4.1.5 Process Communication (Pipes)

Verify that your shell supports one or more pipes.

$ ls -al | wc -w
$ ls -al | wc
$ ls | grep lsh | sort -r

Does the prompt appear after the output of the above command?

$ ls | wc &

After running the above, when does the prompt reappear?

$ cat < tmp.1 | wc > tmp.3
$ cat tmp.1 | wc
$ cat tmp.3

Compare the output of the last two commands above. Are they the same? Why/why not?

$ abf | wc
$ ls | abf
$ grep apa | ls

What are the outputs? When does the prompt appear? Use Ctrl-D, if necessary, to let the grep finish
and to let the shell process take over. Does the grep command terminate eventually (use top to check).
Why/why not?

4.1.6 Built-in Commands

$ cd ..
$ cd lab1
$ cd tmp.tmp

Was there an error generated when executing the commands above?

$ cd ..
$ cd lab1 | abf
$ ls

Did the command ls work?

$ cd

Was there an error? Use pwd to see which the current working directory is.

$ grep exit < tmp.1

Did the shell quit, or did it consider exit as a text string to find in a file?

$..exit

And here? (Use spaces instead of dots)

$ grep exit | hej

Was there an error here? Does the prompt appear?

$ grep cd | wc

Did an output appear? Does it appear after pressing Ctrl-D?

$ exit

4

Are there any zombies after exiting lsh?

5 Appendix: Useful Unix Commands1

5.1 The man Utility
You will need to use the UNIX file API and the UNIX process API for this assignment. However,
there are too many functions for us to enumerate and describe all of them. Therefore you must become
familiar with the man utility, if you aren’t already. Running the command man command will display
information about that command (called a “man page”), and specifically, man unix_func will display
the man page for the UNIX function unix_func(). So, when you are looking at the UNIX functions
needed to implement this assignment, use man to access detailed information about them. The man
program presents you with a simple page of text about the command or function you are interested in,
and you can navigate the text using these commands:

1. Down arrow goes forward one line

2. Up arrow goes back one line

3. f or Spacebar goes forward a page

4. b goes back a page

5. G goes to the end of the man page

6. g goes to the start of the man page

7. q exits man

One problem with man is that there are often commands and functions with the same name; the UNIX
command open and the UNIX file API function open() are an example of this. To resolve situations like
this, man collects keywords into groups called “sections”; when man is run, the section to use can also
be specified as an argument to man. For example, all shell commands are in section 1. (You can see this
when you run man; for example, when you run man ls you will see the text LS(1) at the top of the man
page.) Standard UNIX APIs are usually in section 2, and standard C APIs are usually in section 3.

So, if you run man open, you will see the documentation for the open command from section 1. However,
if you run man 2 open, you will see the description of the open() API call, along with what header file
to include when you use it, and so forth.

You can often even look at some of the libraries of functions by using the name of the header file.
For example, man string (or man 3 string) will show you the functions available in string.h, and
man stdio will show you the functions available in stdio.h.

5.2 Console I/O Functions
You can use printf() and scanf() (declared in stdio.h) for your input and output, although it is
probably better to use fgets() to receive the command from the user. Do not use gets(), ever!!! You
should always use fgets(stdio, ...) instead of gets() since it will allow you to specify the buffer
length. Using gets() virtually guarantees that your program will contain buffer overflow exploits.

5.3 String Manipulation Functions
The C standard API includes many string manipulation functions for you to use in parsing commands.
These functions are declared in the header file string.h. You can either use these functions, or you can
analyze and process command strings directly.

strchr() Looks for a character in a string.

strcmp() Compares one string to another string.

strcpy() Copies a string into an existing buffer; does not perform allocation. Consider using strlcpy()()
for safety.

1Source: http://courses.cms.caltech.edu/cs124/pintos_2.html#SEC27

5

http://courses.cms.caltech.edu/cs124/pintos_2.html#SEC27

strdup() Makes a copy of a string into a newly heap-allocated chunk of memory, which must later be
free()d.

strlen() Returns the length of a string.

strstr() Looks for a substring in another string.

5.4 Process Management Functions
The unistd.h header file includes standard process management functions like forking a process and
waiting for a process to terminate.

getlogin() Reports the username of the user that owns the process. This is useful for the command
prompt.

getcwd() Reports the current working directory of a process. This is also useful for the command
prompt.

chdir() Changes the current working directory of the process that calls it.

fork() Forks the calling process into a parent and a child process.

wait() Waits for a child process to terminate, and returns the status of the terminated process. Note
that a process can only wait for its own children; it cannot wait e.g. for grandchildren or for other
processes. This constrains how command-shells must start child processes for piped commands.

execve(), execvp() The execve() function loads and runs a new program into the current process.
However, this function doesn’t search the path for the program, so you always have to specify the absolute
path to the program to be run.

However, there are a number of wrappers to the execve() function. One of these is execlp(), and it
examines the path to find the program to run, if the command doesn’t include an absolute path. Be
careful to read the man page on execvp() so that you satisfy all requirements of the argument array.
(Note that once you have prepared your argument array, your call will be something like execvp(argv
[0], argv).)

5.5 Filesystem and Pipe Functions
open() Opens a file, possibly creating and/or truncating it when it is opened, depending on the mode
argument. If you use open() to create a file, you can specify 0 for the file-creation flags.

creat() Creates a file (although why not use open() instead?).

close() Closes a file descriptor.

dup(), dup2() These functions allow a file descriptor to be duplicated. dup2() will be the useful function
to you, since it allows you to specify the number of the new file descriptor to duplicate into. It is useful
for both piping and redirection.

pipe() Creates a pipe, and then returns the two file descriptors that can be used to interact with the
pipe. This function can be used to pipe the output of one process into the input of another process:

1. The parent process creates a new pipe using pipe().

2. The parent process fork()s off the child process. Of course, this means that the parent and the
child each have their own pair of read/write file-descriptors to the same pipe object.

3. The parent process closes the read-end of the pipe (since it will be outputting to the pipe), and
the child process closes the write-end of the pipe (since it will be reading from the pipe).

4. The parent process uses dup2() to set the write-end of the pipe to be its standard output, and
then closes the original write-end (to avoid leaking file descriptors).

5. Similarly, the child process uses dup2() to set the read-end of the pipe to be its standard input,
and then closes the original read-end (to avoid leaking file descriptors)

6

	Introduction
	Specifications
	Implementation
	Development and Debugging

	Code & Report Submission
	Self-Test Examples
	Simple Commands
	Commands with parameters
	Redirection with in and out files
	Background Processes
	Process Communication (Pipes)
	Built-in Commands

	Appendix: Useful Unix Commands
	The man Utility
	Console I/O Functions
	String Manipulation Functions
	Process Management Functions
	Filesystem and Pipe Functions

